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Abstract

Motion estimation is one of the fundamental problems in computer vision. It has
broad applications in the fields of robot navigation, mixed and augmented reality,
visual tracking, image and video processing, intelligent transportation systems and
so on. Up until now, motion estimation is far from a solved problem, and it is still
one of the active research topics in and beyond the computer vision community. This
thesis is dedicated to both camera motion estimation – including motion estimation
for 3D and 2D cameras – and dense image motion for color images. We push the
limits of the state of the art in various aspects such as optimality, robustness, accuracy
and flexibility. The main contributions are summarized as follows.

First, a globally optimal 3D point cloud registration algorithm is proposed and
applied to motion estimation of 3D imaging devices. Based on Branch-and-Bound
(BnB) optimization, we optimally solve the registration problem defined in Itera-
tive Closest Point (ICP). The registration error bounds are derived by exploiting the
structure of the SE(3) geometry. Other techniques such as the nested BnB and the
integration with ICP are also developed to achieve efficient registration. Experiments
demonstrate that the proposed method is able to guarantee the optimality, and can
be well applied in estimating the global or relative motion of 3D imaging devices
such as 3D scanners or depth sensors.

Second, a globally optimal inlier-set maximization algorithm is proposed for color
camera motion estimation. We use BnB to seek for the optimal motion which gives
rise to the maximal inlier set under a geometric error. An explicit, geometrically
meaningful relative pose parameterization – a 5D direct product space of a solid 2D
disk and a solid 3D ball – is proposed, and efficient, closed-form bounding functions
of inlier set cardinality are derived to facilitate the 5D BnB search. Experiments on
both synthetic data and real images confirm the efficacy of the proposed method.

Third, a scene constraint based method for relative pose estimation between a 2D
color camera and a 3D sensor is developed. We formulate the relative pose estimation
as a 2D-3D registration problem minimizing the geometric errors from the known
scene constraints. Our method takes only a single pair of color and depth images as
input, and is correspondence-free. In addition, a new single-view 3D reconstruction
algorithm is proposed for obtaining initial solutions. The experiments show that the
method is both flexible and effective, producing accurate relative pose estimates and
high-quality color-depth image registration results.

Fourth, a highly-accurate optical flow estimation algorithm based on piecewise
parametric motion model is proposed. It fits a flow field piecewise to a variety of
parametric models where the domain of each piece (i.e., shape, position and size)
and its model parameters are determined adaptively, while at the same time main-
taining a global inter-piece flow continuity constraint. The energy function takes into
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account both the piecewise constant model assumption and the flow field continuity
constraint, enabling the proposed algorithm to effectively handle both homogeneous
motions and complex motions. The experiments on three public optical flow bench-
marks show that the proposed algorithm achieves top-tier performances.

At last, we propose a robust algorithm for optical flow estimation in the presence
of transparency or reflection. It deals with a challenging, frequently encountered, yet
not properly investigated problem in optical flow estimation: the input two frames
contain one background layer of the scene and one distracting, possibly moving layer
due to transparency or reflection. The proposed algorithm performs both optical
flow estimation and image layer separation. It exploits a generalized double-layer
brightness consistency constraint connecting these two tasks, and utilizes the priors
for both of them. The experiments on synthetic and real images confirm its efficacy.

Key Words: Camera Motion, Image Motion, Point Cloud Registration, Branch
and Bound, Relative Pose Estimation, Optical Flow, Piecewise Parametric Model,
Image Layer Separation.
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Chapter 1

Introduction and Literature
Overview

The view of the 3D world that an imaging device can see at one time-frame or at one
single position is always limited. Moving is arguably the foremost way for a vision
system to perceive and explore a large 3D space. Motion estimation has become one
of the most fundamental and important topics in computer vision. The study begins
with 2D projection cameras and their images in the early 1980s [Longuet-Higgins,
1981; Horn and Schunck, 1981; Lucas and Kanade, 1981] as the emergence of the
computer vision field, and remains an active topic nowadays with many challenging
problems yet to be solved. With the development of ranging techniques, 3D cameras
including range-finders, 3D scanners, depth sensors have since become popular in
many computer and robotic vision systems. Recovering the motion of 3D cameras,
as well as estimating the relative pose between a regular 2D camera and a 3D camera,
are also of high interest.

Motion estimation refers to computing or analyzing the motion pattern of the
camera or the scene image, based on the data acquired by the vision system at the
different time and/or locations. Two typical motion estimation problems exist in
computer vision: i) camera ego-motion estimation, and ii) image motion estimation. Cam-
era ego-motion estimation is the problem of estimating the motion of camera in a
static or partially-dynamic scene. It aims at recovering the 3D rigid motion (i.e., ro-
tation and translation) of the camera, or, equivalently, the 3D rigid transformation
of camera coordinate systems, using the color or depth/range data captured by the
camera. The image motion estimation problem is to compute the pixel movement
vectors on the 2D image plane, in the presence of a dynamic scene and/or a moving
camera. The problems of camera ego-motion estimation and image motion estima-
tion are closely related to each other: image motion is induced by and reflects the
relative motion between the camera and the scene, and the camera motion can be
solved from image motion estimates.

Camera motion estimation is a crucial technique to achieve 3D localization and
data fusion. It has a broad application in the areas of robot navigation, 3D recon-
struction/mapping, mixed and augmented reality, human-computer interaction etc.
Meanwhile, image motion analysis is widely applied in many high-level computer vi-

1
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sion tasks such as event detection, action recognition, object detection, and tracking.
It is also playing an important role in image and video processing such as deblur-
ring, enhancement and compression, and in the autonomous driving and intelligent
transportation area which has seen a recent surge of interest.

1.1 The Camera Motion Estimation Problem

Camera motion estimation aims at recovering the motion of the camera in the 3D
Euclidean world, using the data obtained at two different spatial locations. The
motion can be parameterized by a rigid transformation Θ = (R, t) ∈ SE(3), where
the 3 × 3 rotation matrix R ∈ SO(3) is a Special Orthogonal matrix with RTR =
diag(1, 1, 1) and det(R) = 1. The 3 × 3 vector t ∈ R3 is a 3D translation vector.
SE(3) = SO(3)×R3 is called the Special Euclidean Group which corresponds to the
parameter space of 3D rigid motion.

Three camera motion estimation problems are considered in this thesis: 1) 3D
camera motion estimation, 2) 2D color camera motion estimation, and 3) 2D color camera
and 3D camera relative pose estimation. These three camera motion estimation problems
are introduced as follows.

1.1.1 3D Camera Motion Estimation

In this thesis, we refer “3D cameras” generally to the devices that can obtain the 3D
information of a scene or an object, especially those which can provide dense 3D
measurements, including 3D laser rangefinders, Time-of-Flight Cameras, Microsoft
Kinect sensors and so on.

As shown in Figure 1.1, a 3D camera can perceive the 3D world by measuring
the distances or depths of scene objects, and a 3D point cloud can be obtained from
these measurements. A 3D point cloud can be denoted as X = {xi}, i = 1, . . . , M,
where xi ∈ R3 is the coordinate vector of a 3D point, and M is the number of 3D
points. At two different locations, two point clouds X and Y can be obtained by the
3D camera. Since the two point clouds are obtained in the camera coordinate system,
the problem of estimating camera motion (R, t) is equivalent to rigidly registering the two
point clouds. Specifically, given two point clouds from two partial scans of the scene
with different camera poses, the relative motion can be estimated by registering the
two point clouds. If a global point cloud model Y of the scene or object is known a
priori, then given a point cloud X from a partial scan, the global motion or absolute
pose of the camera can be obtained by registering X onto Y .

Point cloud registration. The point cloud registration problem can be generally
written as

min
(R,t)∈SE(3)

Φ
(

f
(
X , (R, t)

)
, Y
)

, (1.1)

where function f applies rigid transformation (R, t) on X , and Φ(·, ·) is a cost func-
tion measuring the registration error. For example, in the well-known Iterative Clos-
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Figure 1.1: 3D camera motion estimation and point cloud registration, illustrated
with a depth camera. The gray levels on the visualized depth images indicate the
depth to the camera plane: the darker the smaller (closer), expect for the black regions
where depth measurements are missing.1

est Point (ICP) algorithm [Besl and McKay, 1992; Chen and Medioni, 1991; Zhang,
1994], the registration error in (1.1) is defined as the sum of squared closest-point
distances,

E(R, t) =
N

∑
i=1

min
j=1,...M

‖Rxi + t− yj‖2, (1.2)

where xi, i = 1, . . . , N and yj, j = 1, . . . , M are the 3D points in X and Y , respectively.
ICP is one of the most classic and widely used algorithms for point-set registration
in 2D or 3D. Its concept is simple and intuitive: given an initial transformation (ro-
tation and translation), it alternates between building closest-point correspondences
under the current transformation and estimating the transformation with these corre-
spondences, until convergence. Appealingly, ICP is able to work directly on the raw
point-sets, regardless of their intrinsic properties (such as distribution, density, and
noise level). Due to its conceptual simplicity, high usability and good performance
in practice, ICP and its variants are very popular and have been successfully applied
in numerous real-world tasks [Newcombe et al., 2011; Seitz et al., 2006; Makela et al.,

1Depth images from [Shotton et al., 2013]
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2002].
There are two drawbacks of the classic ICP algorithm. First, it is known for its

susceptibility to local minima, due to the non-convexity of the problem as well as the
local iterative procedure it adopts. It requires a good initialization, without which the
algorithm may converge to a wrong registration. Second, the L2-norm least squares
fitting in (1.2) is susceptible to outliers, and a small number of outliers may lead to
erroneous registration. Many approaches have been proposed to address the above
issues and improve the performance of ICP.

Robust estimation. To address the outlier issue, two common strategies exist based
on either 1) robust statistics or 2) robust cost function (instead of the squared dis-
tances). For example, some methods reject the corresponding points more than a
given distance apart [Champleboux et al., 1992; Pulli, 1999], while some others reject
the worst n% of the pairs with the largest distances (i.e., the trimming strategy in
robust statistics) [Pulli, 1999; Chetverikov et al., 2005]. Chetverikov et al. [2005] also
proposed an automatic overlap ratio estimation method to find the best trimming
percentage. Masuda and Yokoya [1994] computed the rigid motion which minimizes
the median of the squared distance residuals. Fitzgibbon [2003] applied robust ker-
nels such as a Lorentzian function or a Huber function to gain outlier-robustness
and used Levenberg-Marquardt algorithm [Moré, 1978] to directly minimize the cost
function. [Bouaziz et al., 2013] replaced the squared distances in (1.2) with Lp-norm
distances where 0 < p 6 1. It was shown by Jian and Vemuri [2005] that if the
point-sets are represented with Gaussian Mixture Models (GMMs), ICP is related to
minimizing the Kullback-Leibler (KL) divergence of two GMMs. Improved robust-
ness to outliers are achieved by GMM-based techniques [Jian and Vemuri, 2005; Tsin
and Kanade, 2004; Myronenko and Song, 2010; Campbell and Petersson, 2015] using
the KL-divergence or the L2 distance of GMMs.

Dealing with the local minima issue. To deal with the issue of local minima, pre-
vious efforts have been devoted to widening the basin of convergence [Fitzgibbon,
2003; Tsin and Kanade, 2004], performing heuristic and non-deterministic global
search [Sandhu et al., 2010; Silva et al., 2005] and utilizing other methods for coarse
initial alignment [Rusu et al., 2009; Makadia et al., 2006]. For example, better conver-
gence than ICP was observed using the method of Fitzgibbon [2003], especially with
the use of robust kernels. The GMM-based methods [Jian and Vemuri, 2005; Tsin and
Kanade, 2004; Myronenko and Song, 2010; Campbell and Petersson, 2015] have also
shown improved robustness to poor initializations. Some methods extend ICP by
robustifying the distance between points using invariant feature descriptors [Sharp
et al., 2002] or color [Johnson and Sing, 1999]. A typical family of global registra-
tion methods adopts stochastic optimization such as Genetic Algorithms [Silva et al.,
2005; Robertson and Fisher, 2002], Particle Swam Optimization [Wachowiak et al.,
2004], Particle Filtering [Sandhu et al., 2010] and Simulated Annealing schemes [Blais
and Levine, 1995; Papazov and Burschka, 2011]. Another family introduces shape
descriptors for coarse alignment, such as Spin Images [Johnson and Hebert, 1999],
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Figure 1.2: 2D color camera motion estimation.2

Shape Contexts [Belongie et al., 2002], Integral Volume [Gelfand et al., 2005], Point
Feature Histograms [Rusu et al., 2009] and Extended Gaussian Images (EGI) [Maka-
dia et al., 2006]. These descriptor-based methods are typically equipped with random
sampling [Rusu et al., 2009], greedy algorithms [Johnson and Hebert, 1999], Hough
Transforms [Woodford et al., 2014] or BnB algorithms [Gelfand et al., 2005; Bazin
et al., 2012] to compute the registration parameter. The RANSAC algorithm [Fis-
chler and Bolles, 1981] is also used to register raw point clouds directly [Irani and
Raghavan, 1999; Aiger et al., 2008].

Although the local minima issue can be alleviated by the aforementioned meth-
ods, the global optimality cannot be guaranteed by them. Furthermore, some meth-
ods, such as those based on feature matching, are not always reliable or even appli-
cable when the point-sets are not sampled densely from smooth surfaces. Registra-
tion methods that guarantee optimality have been published in the past, albeit in a
smaller number. Most of them are based on BnB algorithms. For example, geomet-
ric BnB has been used for 2D image pattern matching [Breuel, 2003; Mount et al.,
1999; Pfeuffer et al., 2012]. However, extending them to 3D is often impractical due
to the heightened complexity [Breuel, 2003]. A few optical 3D registration method
have been proposed recently, but they either make unrealistic assumptions such as
the two point-sets are of equal size [Li and Hartley, 2007], the translation is known
a prior [Bazin et al., 2012; Bustos et al., 2014], or assume a small number of putative
correspondences exists [Gelfand et al., 2005; Enqvist et al., 2009].

1.1.2 2D Color Camera Motion Estimation

The study of motion estimation for regular, perspective 2D cameras has a long his-
tory. 2D color camera motion estimation is often coupled with 3D structure esti-
mation. The process of inferring 3D structure as well as the camera motion from

2The color images are from http://www.robots.ox.ac.uk/~vgg/data/data-mview.html.

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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2D images is known as Structure from Motion (SfM). The relative motion estimation
problem of two views is illustrated in Figure 1.2.

Perspective camera model. A 2D camera maps the 3D world (object space) onto
a 2D image plane. Cameras with perspective projections are most commonly used,
and are of interest in this thesis. We first consider a simple case where the camera
coordinate frame coincides with the origin of 3D world coordinate frame. Under a
perspective camera model, a point X = (X, Y, Z)T in the 3D world is projected onto
the image plane as a 2D image point via the following equation:

λx̃ = KX. (1.3)

In this equation, x̃ = (x, y, 1)T is the homogeneous coordinate representation of 2D
image pixel location (x, y)T. λ is called the projective “depth" of the point (which
equals Z in this simple case). The 3×3 matrix K is the camera intrinsic matrix, which
encompasses the camera’s focal length, image sensor format, principal point and
axis skew. The intrinsic matrix can be obtained by a calibration procedure using a
3D object with a known 3D shape (such as a planar checkerboard pattern [Zhang,
2000]), or be estimated via self-calibration [Faugeras et al., 1992; Pollefeys et al., 1999].
Throughout this thesis, the intrinsic matrices of the cameras are assumed to be known.

In a general coordinate system, the projection relationship is given by

λx̃ = K(RX + t) = K
[

R t
0 1

]
X̃ = PX̃. (1.4)

where (R, t) is the extrinsic parameter of the camera, i.e., the 3D rigid transformation
from the world coordinate system to the camera coordinate system. X̃ = (X, Y, Z, 1)T

is the homogeneous coordinate representation, and the 3×4 matrix P which con-
tains both the intrinsic and extrinsic parameters of the camera is called the camera
projection matrix.

Epipolar geometry of two views. Studying two-view geometry is the first step for
3D reconstruction and camera relative motion recovery. The history of the study is
closely related to the field of photogrammetry, where the task is obtaining reliable
measurement by means of photographs [Slama et al., 1980]. Hauck [1883] is probably
the first to develop the relationship between projective geometry and photogramme-
try, where the concept of epipoles – the points on the image planes cut by the line
joining the two camera centers – was introduced. Von Sanden [1908] then presented
comprehensively how to determine the epipoles. Thompson [1959] proposed to an
iterative solution of five simultaneous third-order equations to solve the rotation
matrix and translation with five points. In computer vision, Longuet-Higgins [1981]
proposed a linear algorithm to solve a 3×3 essential matrix with 8 points, and simple
solutions to recover translation and rotation from the essential matrix and reconstruct
the points. More details about the history of the two-view epipolar geometry can be
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baselineepipole

epipolar	line

epipolar	plane

Figure 1.3: Epipolar geometry. The two viewing rays for one 3D point and the camera
baseline lie in one epipolar plane, which intersects the two image planes with two
epipolar lines. All epipolar lines on each image plane intersect at the epipole.

found in [Kim et al., 2008] (Chapter 2.2).
The epipolar geometry is illustrated in Figure 1.3. Essentially, it shows that the

two viewing rays of the two cameras targeting at one 3D point and the camera base-
line joining the two camera centers lie in the same plane. The plane is called the
epipolar plane. It intersects the two image planes in the epipolar lines. All the epipo-
lar lines on each image plane intersect at one image point, i.e., the epipole. Let the
camera coordinate system of the first camera be the world coordinate system, and
(R, t) be the rotation and translation from the first camera to the second camera. Let
ẋ, ẋ′ be two corresponding image points expressed in the normalized coordinates (i.e.,
ẋ = K−1x̃ and ẋ′ = K′−1x̃′ where K and K′ are the camera intrinsic matrix). Then
from the epipolar geometry, we have the following equation:

ẋ′T[t]×Rẋ = ẋ′TEẋ = 0, (1.5)

where [ · ]× denotes the skew-symmetric matrix representation of a vector3, and the
matrix E = [t]×R is the essential matrix. This linear equation in fact encodes the
coplanar constraint: it entails that ẋ′ is perpendicular to [t]×Rẋ – the cross product of
t and Rẋ. Another closely related concept in the uncalibrated case is the fundamental
matrix F = K′−TEK−1, with which we have x̃′TFx̃ = 0. More details regarding the
essential matrix and fundamental matrix can be found in [Hartley and Zisserman,
2005] (Chapter 9). Based on the epipolar geometry, most SfM algorithms works
by first estimating the essential matrix E or the fundamental matrix F from image
point correspondences, followed by recovering the camera relative motion (R, t) and
reconstructing the 3D points. Note that the scale of translation cannot be recovered,
and a convenient way is to set t to unit length (i.e., ‖t‖2 = 1).

3Let a = [a1, a2, a3]
T, then [a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

.
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An essential matrix has 5 degrees of freedom, and it is well known that an essen-
tial matrix can be determined by at least five pairs of image points [Kruppa, 1913;
Faugeras and Maybank, 1990; Heyden and Sparr, 1999]. For practical implemen-
tation of the minimal solver (i.e., five-point algorithms), Philip [1996] presented an
efficient derivation which leads to solving a thirteenth-degree polynomial. Triggs
[2000] derived a 20×20 non-symmetric matrix whose eigenvalues and eigenvectors
encode the solutions. Nistér [2003, 2004] refined Philip’s method by using a bet-
ter elimination which leads directly in closed form to the tenth-degree polynomial.
Based on the hidden variable technique, Li and Hartley [2006]; Hartley and Li [2012]
also derived a tenth-degree polynomial which avoids using variable elimination. For
non-minimal solutions, the eight-point solver of Longuet-Higgins [1981] is derived
from (1.5) and very simple to implement, albeit it minimizes an algebraic error. Hart-
ley [1997] proposed a normalized eight-point algorithm to estimate the fundamental
matrix.

Robust relative motion estimation. The image correspondences to compute the
relative pose are usually obtained using image feature detection and matching tech-
niques. Some typical techniques in the early days include the Harris detector [Har-
ris and Stephens, 1988] and its variants [Shi and Tomasi, 1994; Mikolajczyk and
Schmid, 2004], Laplacian of Gaussian (LoG) detector [Lindeberg, 1998], etc. More re-
cently, high performance algorithms have been developed such as SIFT [Lowe, 2004],
SURF [Bay et al., 2006], ORB [Rublee et al., 2011], to name a few. In spite of this,
natural or man-made scenes often contain similar structures, flat (and ambiguous)
regions, repetitive patterns etc., making flawless feature matching nearly impossible.
Therefore, correspondence outliers are ubiquitous in reality.

To deal with outliers, RANSAC [Fischler and Bolles, 1981] and its variants have
played a major role. The RANSAC algorithm repeatedly samples a small subset
of the points randomly to generate model hypotheses, among which the one with
most congruent points is chosen such that a largest congruent set or inlier set is
estimated. Many RANSAC variants have been proposed in the context of multiple
view geometry and SfM, such as the Locally Optimized RANSAC [Chum et al., 2003],
Preemptive RANSAC [Nistér, 2005], PROSAC [Chum and Matas, 2005], Optimal
Randomized RANSAC [Chum and Matas, 2008] and GroupSAC [Ni et al., 2009].
A review of these variants and a framework called USAC which combines these
techniques are given in [Raguram et al., 2013]. The RANSAC methods are efficient
and work quite well in practice. However, being based on random sampling, they
cannot provide an optimality guarantee in theory, and the inlier sets they find often
vary from time to time. Besides, when non-minimal-case solver is used (such as the
linear eight-point algorithm [Longuet-Higgins, 1981; Hartley, 1997]), the algebraic
solution is not consistent with the geometric reprojection error or Sampson error
typically used to determine inliers/outliers.

There have been some research efforts devoted to optimal essential matrix esti-
mation with inlier-set maximization criterion [Enqvist et al., 2011; Enqvist and Kahl,
2009]. Enqvist et al. [2011] proposed a brute-force search method using triangulation
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feasibility test. The solution is exhaustively searched over the discretized parameter
space formed by two unit spheres. Enqvist and Kahl [2009] made use of double pairs
of correspondences and estimated the camera pose by searching the two epipoles
via a branch-and-bound method. An approximation is made to solve an otherwise
NP-hard problem (minimum vertex cover). Li [2009] proposed a branch-and-bound
method to find the optimal fundamental matrix maximizing the inlier set, where an
algebraic error was used to determine inliers.

Another line of robust estimation is outlier removal using convex optimization
and the L∞-norm [Sim and Hartley, 2006; Ke and Kanade, 2007; Olsson et al., 2010].
These methods are able to detect and remove potential outliers, at the expense of los-
ing some true inliers. In the SfM problem, they assume known rotation to formulate
the problem to be (quasi-)convex.

Multi-view and large-scale SfM. With the epipolar geometry of two views as an
atomic building block, SfM can be achieved for multiple views of a large scale scene
by registering the cameras with their relative poses.

The widely used approach to doing this is incrementally incorporating the cam-
eras and refining the results [Pollefeys et al., 2004; Snavely et al., 2006; Klein and
Murray, 2007; Agarwal et al., 2009]. Specifically, it involves first building a small
reconstruction from two or several views, then growing a few views at a time by reg-
istering the images with existing 3D points, followed by triangulating new 3D points
and running the bundle adjustment [Triggs et al., 1999; Hartley and Zisserman, 2005].
Bundle adjustment is a nonlinear least square optimization technique which jointly
optimize the camera motions, 3D structures, and the camera intrinsic parameters via
minimizing the image reprojection error:

E({Pj}, {Xk}) = ∑
i

ρ
(
‖π(Pj(i), Xk(i))− xi‖2

2

)
, (1.6)

where π is the projection function, ρ is a penalty function which usually down-
weighs outliers, and Pj, Xk and xi are respectively the camera matrices, the 3D points
and the 2D pixel locations. The incremental approach can be time-consuming. The
costly bundle adjustment need to be run again and again with increasingly expensive
computation as the number of views and reconstruction grow.

In contrast to the incremental SfM, some methods work in a global manner and
are able to simultaneously recover all the camera motions based on the pairwise
epipolar geometries. Given the relative rotations and translations, they typically
first solve for the global rotations and then the global translations [Govindu, 2001;
Martinec and Pajdla, 2007; Jiang et al., 2013; Moulon et al., 2013; Crandall et al., 2013].
The global rotations can be estimated by rotation averaging techniques [Hartley et al.,
2013] independent of translations. The translations can then be estimated with linear
solutions [Govindu, 2001; Jiang et al., 2013]. Crandall et al. [2013] proposed to first
solve rotation and translation via discrete labeling in an MRF framework to get coarse
estimates, and then apply continuous optimization of non-linear least square to refine
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them. The results of these methods are usually refined with one round of global
bundle adjustment at the end.

Factorization-based methods [Tomasi and Kanade, 1992; Sturm and Triggs, 1996;
Oliensis and Hartley, 2007; Dai et al., 2010] can be deemed as another family of the
global methods for multi-view SfM. They usually assume that every 3D point is ob-
served in all input views (which might be too restrictive in practice), and make use
of the fact that the measurement matrix, i.e., the matrix composed of 2D point coor-
dinates, is of low rank. The camera motion and structure can thus be estimated by
factorizing the low-rank measurement matrix. Tomasi and Kanade [1992] pioneered
the research in this direction, and proposed a factorization strategy for affine cam-
eras based on Singular Value Decomposition (SVD). Factorization under perspective
cameras is much more difficult due to the unknown projective depths in the measure-
ment matrix. Sturm and Triggs [1996] proposed to first estimate the projective depths
from epipolar geometry then perform factorization. This method is then extended
by iterative solutions [Triggs, 1996; Mahamud and Hebert, 2000; Mahamud et al.,
2001; Oliensis and Hartley, 2007] that alternate between estimating projective depths
and performing the factorization. However, the problem is still not fully solved. As
shown in [Oliensis and Hartley, 2007], the iterations may often converge to trivial or
useless solutions, or run into unstable states. The remedy in Oliensis and Hartley
[2007] gives rise to a stable solution with convergence, albeit the solution is biased
towards all depths being close to one due to the regularization used. [Dai et al., 2010]
proposed a non-iterative solution to the problem by reformulating and relaxing it to a
convex semi-definite programming problem. Extensions are presented in [Dai et al.,
2010] to handle outliers and missing data.

1.1.3 2D Color Camera and 3D Camera Relative Pose Estimation

Depth cameras can provide the three-dimensional perception of the scene, while con-
ventional 2D color cameras can provide the color of the visual world. 3D geometry
and color are complementary information, and can be fused for advanced perception.
As the depth camera and color camera are at different locations in the 3D space, the
depth and color images they captured cannot be fused directly. To achieve color and
depth data fusion, the relative pose between the two cameras is required to register
the two images.

The goal of relative pose estimation of a color camera and a depth camera is to
compute a 3D rigid transformation (R, t) ∈ SE(3) between the color and depth cam-
era coordinate systems, as shown in Figure 1.4. This is not an easy task, and can not
be achieved by conventional relative pose estimation techniques for color cameras de-
scribed previously (i.e., computing the motion using feature correspondences). The
reason is that a color image and a depth image bear different types of information of
the scene, and no suitable cross-modality feature extraction and matching technique
exist at present. In fact, feature matching is a difficult task even by manual feature
point selection: a salient image point on one image may not be salient enough for
manual selection on the other image.



§1.1 The Camera Motion Estimation Problem 11

Figure 1.4: 2D color camera and 3D camera relative pose estimation.

Multi-view calibration. Up until now, color and depth camera relative pose esti-
mation has been mostly achieved as a camera extrinsic calibration task, in a way that
is very similar to the conventional procedure of calibrating a regular color camera.
Typically, this involves the user waving a plate with a checkerboard pattern in front
of the camera(s). For example, the camera calibration works by Herrera C et al.
[2012] and Zhang and Zhang [2011] are of this type. Herrera C et al. [2012] presented
a method to calibrate the intrinsic and extrinsic parameters of two color cameras
and a depth camera by using a planar pattern surface. The calibration procedure is
similar to the conventional plane-based color camera calibration [Zhang, 2000], i.e., a
checkerboard is waved before the cameras and imaged from various poses. The user
needs to give the correspondences across the color images and mark the plane region
on the depth images. The calibration method of Zhang and Zhang [2011] is similar,
although they additionally make use of the correspondences between the color im-
age and the depth image to improve accuracy. Smisek et al. [2011] calibrated Kinect
cameras using correspondences between the RGB image and the infrared image.

Among other calibration works, Zhang and Pless [2004] proposed a practical pro-
cedure to extrinsically calibrate an RGB camera with a 2D Laser-Rangefinder (LRF),
where a checkerboard pattern was moved freely in front of both sensors. Extrinsic
calibration was achieved by solving a set of linear constraints which were subse-
quently refined by iterative minimization of the reprojection error. Likewise, Vascon-
celos et al. [2012] also studied the calibration of a color camera with a 2D LRF and
they showed that a set of three pairs of planes and lines provides a minimal configu-
ration to solve the calibration problem linearly. Scaramuzza et al. [2007] proposed a
method to estimate the relative pose between a color camera and a 3D LRF. However,
this method requires manually selecting correspondences between the color image
and the depth image. To this end, they convert a range image to a so-called bearing
angle image on which natural features of a scene are highlighted to facilitate manual
feature selection. Alismail et al. [2012] used a calibration target consisting of a single
circle to estimate the extrinsic parameters of a camera-Lidar system. The method
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detects the circles (projected as ellipses) and their physical centers on multiple color
images, reconstruct them to 3D, and register them onto the point clouds from Lidar
to obtain the relative pose.

Single-shot calibration. The aforementioned calibration methods require multiple
color and depth (range) image pairs. It is appealing if the relative pose can be esti-
mated by one pair of images from a single shot of the cameras, in a similar way to
the 2D camera relative motion estimation described in Section 1.1.2. However, little
work that uses a single shot has been published to out knowledge, except for the
work by Geiger et al. [2012b]. This is typically because of the difficulty in building
cross-modality image correspondences. Geiger et al. [2012b] set up multiple checker-
board patterns in a large scene, such that one color and range image pair is enough
to calibrate the cameras. This is essentially similar to a multi-shot configuration.
Their calibration process involves an explicit segmentation of the planar regions cor-
responding to the checkerboard.

1.2 The Image Motion (Optical Flow) Estimation Problem

In computer vision, the apparent movement of brightness/color patterns in a 2D
image is called Optical Flow [Horn and Schunck, 1981]. The task of optical flow
estimation is to estimate the pixel motions from the observed image data. Specifically,
the optical flow estimation is defined as follows.

Given two images I, I′ which are taken from a regular color camera at two time
stamps, estimate for each pixel x in I a 2D motion vector u, such that it moves
to its corresponding position in I′.

Figure 1.5 shows two pairs of images and their flow field visualization.
Optical flow is fundamental problem in computer vision. The seminal works

are due to Horn and Schunck [1981] and Lucas and Kanade [1981], after which the
problem has been heavily investigated in the past decades, with many high perfor-
mance optical flow algorithms proposed [Brox et al., 2004; Zach et al., 2007; Sun et al.,
2014b; Xu et al., 2012; Revaud et al., 2015]. Despite these successes, to obtain dense
and accurate flow field remains challenging, especially for general dynamic scenes
containing complex and large motions. Up until now, optical flow estimation is still
a hot topic in computer vision.

The brightness constancy constraint. The basic assumption to solve the optical
flow problem is the so-called Brightness Constancy Constraint (BCC). This constraint
entails that, the brightness or color should remain the same when a pixel on the first
image moves to its corresponding position in the second image, i.e.,

I(x) = I′(x + u). (1.7)
4The two image pairs are from [Liu et al., 2008] and [Butler et al., 2012] respectively. The color

coding scheme are from [Baker et al., 2011b].
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Figure 1.5: Image optical flow estimation.4

If we view the image brightness as a function of time, (1.7) can be written as

I(x, t) = I(x + u, t + 1). (1.8)

Using Taylor series, I(x + u, t + 1) can be linearized as

I(x + u, t + 1) = I(x, t) + u1 · Ix + u2 · Iy + It + H.O.T. (1.9)

where u1, u2 are respectively the horizontal and vertical motions, Ix = ∂xI(x, t) and
Iy = ∂yI(x, t) are the respectively the horizontal and vertical gradients at x, and It =
∂tI(x, t) = I(x, t + 1) − I(x, t) is the temporal brightness difference. Consequently,
(1.9) can be rewritten as

u1 · Ix + u2 · Iy = −It, (1.10)

which is a widely-used formulation. Note that the linearization is only valid for
small motions. To handle large motions, one classic strategy is to employ a coarse-
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to-fine pyramid warping scheme [Bergen et al., 1992a; Brox et al., 2004; Bruhn et al.,
2005].

Although BCC serves as a basic constraint, using it alone cannot solve the optical
flow problem effectively, especially for homogenous textureless image regions where
the aperture problem can occur. To render the optical flow problem trackable, addi-
tional constraints should be exploited to regularize the solution, among which the
smoothness constraint is the most widely used one. According to the use of smooth-
ness constraint, existing methods can be roughly classified into two categories: the
local methods such as [Lucas and Kanade, 1981] and the global methods such as [Horn
and Schunck, 1981].

Local methods. The local methods usually compute the flow vector for each pixel
independently without considering the global smoothness of the flow field. To com-
pute the flow for a pixel, it only assumes a constant flow vector within a local patch
centered at that pixel. A typical formulation is

min
u(x)

∑
y∈Wx

Ψ
(
I(y)− I′(y + u(x))

)
, ∀x ∈ Ω (1.11)

where u is the flow field and u(x) is the flow vector for pixel x, Wx is a local image
window centered at x, Ω is the 2D image domain of I, and Ψ(·) is a specific penalty
function. Typical penalty functions include a squared L2 norm Ψ(x) = x2 as in
[Lucas and Kanade, 1981] and some robust functions such as Truncated L2 norm and
Huber [Senst et al., 2012]. The advantage of local methods is its high efficiency, since
the pixel motions can be solved independently, each with small computation costs.
For example, linearization is used in [Lucas and Kanade, 1981], and two points or
more can be sued to solve an optical flow vector as (1.11) has two unknowns.

Instead of using linearization, some other methods work by enumerating flow
vectors and picking the one which best satisfies the BCC [Bao et al., 2014; Lu et al.,
2013], thus they suffer less from the local minima issue induced by the lineariza-
tion and coarse-to-fine warping. One noticeable family which has become popular
recently is stimulated by the PatchMatch algorithm [Barnes et al., 2009, 2010]. Patch-
Match was originally introduced in the computer graphics community to compute
approximate nearest neighbor fields of image patches for image editing. Due to its
ability to handle large displacement effectively and efficiently, it has inspired many
works in computer vision for optical flow and stereo matching [Bleyer et al., 2011;
Lu et al., 2013; Bao et al., 2014; Besse et al., 2014; Li et al., 2015a]. For example, Lu
et al. [2013] combined PatchMatch with cost volume filtering techniques [Hosni et al.,
2013] and achieved fast and accurate optical flow estimation. Bao et al. [2014] further
achieved 5-FPS optical flow estimation with the aid of a modern GPU.

Although being quite fast, purely local methods can hardly compete with global
methods in terms of accuracy, according to the optical flow benchmarks [Baker et al.,
2011b; Butler et al., 2012; Geiger et al., 2012a]. One reason is their inferior perfor-
mance for textureless local regions.
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Global methods. The global methods have drawn greater attention from the com-
munity due to their high-end performances. These methods typically constrains
the overall smoothness of the flow field and solve the problem with a variational
approach. One widely used variational formulation with a first order smoothness
constraint is

E(u) =
∫

Ω
Ψd
(
I(x)− I′(x + u(x))

)︸ ︷︷ ︸
data term

+λ
(
Ψs(∇u1) + Ψs(∇u2)

)︸ ︷︷ ︸
smoothness term

dx (1.12)

where u1 and u2 are respectively the horizontal and vertical flow fields, ∇ = (∂x, ∂y)T

is the gradient operator, and Ψd, Ψs are the cost functions. For example, with both
Ψd and Ψs as squared L2 norms Ψ(x) = x2, one may get the formulation in [Horn
and Schunck, 1981]. Brox et al. [2004] introduced the Charbonnier penalty function
Ψ(x) =

√
x2 + ε2 to improve the robustness and preserve discontinuity. The Char-

bonnier penalty can be viewed as a modified L1 norm, where ε is a small constant
(e.g., 0.001 in [Brox et al., 2004]. The Lorentzian penalty Ψ(x) = log(1 + x2

2σ ), which
is a non-convex penalty is used in [Black and Anandan, 1996] to further improve
the robustness. Sun et al. [2010a] investigated a generalized Charbonnier penalty
Ψ(x) = (x2 + ε2)a with different a on the Middlebury dataset [Baker et al., 2011b],
and concluded that a = 0.45 is the best choice. The aforementioned penalty func-
tions are all differentiable everywhere, and solving the minimization problem in 1.13
with these penalty functions typically involve solving a serious of partial differential
equations (PDEs) using the Euler-Lagrange equation [Horn and Schunck, 1981].

A non-differentiable formulation was adopted by Zach et al. [2007]; Wedel et al.
[2009] where L1-norm penalty for data term and Total Variation (TV) cost for the
smoothness term are used. Specifically, the penalty functions are repsectively Ψd(·) =
| · | and Ψs(∇uh) =

√
∂2

xuh + ∂2
yuh. To solve the minimization, an auxiliary variable

(flow field v) is introduced to split the data and smoothness terms as

E(u) =
∫

Ω
Ψd
(
I(x)− I′(x+u(x))

)
+

1
2θ

(u− v)2 +λ
(
Ψs(∇v1)+Ψs(∇v2)

)
dx (1.13)

where θ is a small constant to ensure v is close to u. The minimization is performed
via optimizing over u and v alternately. Solving for v amounts to a Rudin-Osher-
Fatemi (ROF) problem [Rudin et al., 1992], and a efficient, GPU-friendly primal-
dual algorithm of Chambolle [2004] was used in [Zach et al., 2007; Wedel et al.,
2009]. The TV-L1 method has become a popular method due to its good perfor-
mance as well as its efficiency (real-time optical flow estimatin can be obtained using
a GPU [Zach et al., 2007; Wedel et al., 2009]). Recently, the Total Generalized Varia-
tion (TGV) [Bredies et al., 2010] is proposed, and the second-order TGV which favors
piecewise affine fields has been applied to the optical flow problem [Braux-Zin et al.,
2013; Ranftl et al., 2014]. The optimization is also based on the primal-dual algo-
rithms [Chambolle, 2004; Chambolle and Pock, 2011].

The evaluation and analysis of some other commonly-used techniques in optical



16 Introduction and Literature Overview

flow estimation, such as image preprocessing, coarse-to-fine warping and intermedi-
ate median filtering, can be found in [Sun et al., 2014b].

1.3 Thesis Outline and Contributions

• In Chapter 2, a globally optimal 3D point cloud registration algorithm is pro-
posed and applied to motion estimation of 3D cameras. Based on Branch-and-
Bound (BnB) optimization, we present the first globally optimal solution to the
registration problem defined in ICP. By exploiting the special structure of the
SE(3) geometry, novel bounds for the registration error function are derived.
Other techniques such as the nested BnB and the integration with ICP are also
developed to achieve efficient registration. Experiments demonstrate that the
proposed method is able to guarantee the optimality, and can be well applied
in estimating the global or relative motion of 3D imaging devices such as 3D
scanners or depth sensors.

• In Chapter 3, a globally optimal inlier-set maximization algorithm for color
camera motion estimation is proposed to handle feature mismatches. To ad-
dress the issue that the popular RANSAC algorithm cannot guarantee the
largest inlier-set or even can never obtain such a solution, we propose using
BnB to seek for the optimal motion which gives rise to the maximal inlier set
under a geometric error. An explicit, geometrically meaningful relative pose
parameterization – a 5D direct product space of a solid 2D disk and a solid 3D
ball – is proposed, and efficient, closed-form bounding functions of inlier set
cardinality are derived to facilitate the 5D BnB search. Experiments on both
synthetic data and real images confirm the efficacy of the proposed method.

• In Chapter 4, a scene-constraint based method is proposed for relative pose esti-
mation between a 2D color camera and a 3D sensor such as a depth camera. The
motivation is to use a single pair of images (i.e. one from each camera similar
to color camera motion estimation and depth camera motion estimation) and
to provide a correspondence-free solution in order to minimize human inter-
vention. To this end, we propose to make use of known geometric constraints
from the scene, and formulate relative pose estimation as a 2D-3D registration
problem minimizing the geometric errors from scene constraints. In addition, a
new single-view 3D reconstruction algorithm is proposed for obtaining initial
solutions. The experiments show that the method is both flexible and effective,
producing accurate relative pose estimates and high-quality color-depth image
registration results.

• In Chapter 5, a highly-accurate optical flow estimation algorithm based on
piecewise parametric motion model is proposed. The proposed algorithm fits
a flow field piecewise to a variety of parametric models where the domain of
each piece (i.e., shape, position and size) and its model parameters are de-
termined adaptively, while at the same time maintaining a global inter-piece
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flow continuity constraint. The novel energy function takes into account both
the piecewise constant model assumption and the flow field continuity con-
straint, enabling the proposed algorithm to effectively handle both homoge-
neous motions and complex motions. The experiments on three public optical
flow benchmarks show that the proposed algorithm achieves top-tier perfor-
mances.

• In Chapter 6, a robust algorithm for optical flow estimation in the presence of
transparency or reflection is proposed. It deals with a challenging, frequently
encountered, yet not properly investigated problem in two-frame optical flow
estimation. That is, the input frames contain two imaging layers – one desired
background layer of the scene, and one distracting, possibly moving layer due
to transparency or reflection. The proposed robust algorithm performs both
optical flow estimation and image layer separation. It exploits a generalized
double-layer brightness consistency constraint connecting these two tasks and
utilizes the priors for both of them. To our knowledge, this is the first attempt
towards handling generic optical flow fields of two-frame images containing
transparency or reflection.
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Chapter 2

Globally Optimal 3D Registration
and 3D Camera Motion Estimation

Point cloud registration is a fundamental problem in computer and robot vision.
Given two sets of points in different coordinate systems, or equivalently in the same
coordinate system with different poses, the goal is to find the transformation that
best aligns one of the point clouds to the other. Point cloud registration plays an
important role in many vision applications. Given multiple partial scans of an object
or a scene, it can be applied to merge them into a complete 3D model [Blais and
Levine, 1995; Huber and Hebert, 2003] and estimate the relative camera motions.
In robot navigation, the global motion of the camera or the robot can be achieved
by registering the current view into the global environment [Nüchter et al., 2007;
Pomerleau et al., 2013]. In object recognition, fitness scores of a query object with
respect to existing model objects can be measured with registration results [Johnson
and Hebert, 1999; Belongie et al., 2002]. Given cross-modality data acquired from dif-
ferent sensors with complementary information, registration can be used to fuse the
data [Makela et al., 2002; Zhao et al., 2005] or determine the relative poses between
these sensors [Yang et al., 2013a; Geiger et al., 2012c].

Among the numerous registration methods proposed in the literature, the Itera-
tive Closest Point (ICP) algorithm [Besl and McKay, 1992; Chen and Medioni, 1991;
Zhang, 1994], introduced in the early 1990s, is the most well-known algorithm for
efficiently registering two 2D or 3D point sets under Euclidean (rigid) transforma-
tion. Its concept is simple and intuitive: given an initial transformation (rotation
and translation), it alternates between building closest-point correspondences under
the current transformation and estimating the transformation with these correspon-
dences, until convergence. Appealingly, point-to-point ICP is able to work directly
on the raw point sets, regardless of their intrinsic properties (such as distribution,
density and noise level). Due to its conceptual simplicity, high usability and good
performance in practice, ICP and its variants are very popular and have been suc-
cessfully applied in numerous real-world tasks ([Newcombe et al., 2011],[Seitz et al.,
2006],[Makela et al., 2002], for example).

However, ICP is also known for its susceptibility to the problem of local minima,
due to the non-convexity of the problem as well as the local iterative procedure it

19
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adopts. Being an iterative method, it requires a good initialization, without which
the algorithm may easily become trapped in a local minimum. If this occurs, the so-
lution may be far from the true (optimal) solution, resulting in erroneous estimation.
More critically, there is no reliable way to tell whether or not it is trapped in a local
minimum.

To deal with the issue of local minima, previous efforts have been devoted to
widening the basin of convergence [Fitzgibbon, 2003; Tsin and Kanade, 2004], per-
forming heuristic and non-deterministic global search [Sandhu et al., 2010; Silva
et al., 2005] and utilizing other methods for coarse initial alignment [Rusu et al.,
2009; Makadia et al., 2006], etc. However, global optimality cannot be guaranteed
with these approaches. Furthermore, some methods, such as those based on feature
matching, are not always reliable or even applicable when the point clouds are not
sampled densely from smooth surfaces.

The proposed method in this chapter is, to the best of our knowledge, the first
globally optimal solution to the Euclidean registration problem defined by ICP in
3D. Our method always produces the exact and globally optimal solution, up to the
desired accuracy. It is named the Globally Optimal ICP, abbreviated to Go-ICP.

We base the Go-ICP method on the well-established Branch-and-Bound (BnB) the-
ory for global optimization. Nevertheless, choosing a suitable domain parametriza-
tion for building a tree structure in BnB and, more importantly, deriving efficient
error bounds based on the parametrization are both non-trivial. Our solution is in-
spired by the SO(3) space search technique proposed by Hartley and Kahl [2007] as
well as Li and Hartley [2007]. We extend it to SE(3) space search and derive novel
bounds of the 3D registration error. Another feature of the Go-ICP method is that we
employ, as a subroutine, the conventional (local) ICP algorithm within the BnB search
procedure. The algorithmic structure of the proposed method can be summarized as
follows.

Use BnB to search the space of SE(3)
Whenever a better solution is found, call ICP initialized at this solution to refine
(reduce) the objective function value. Use ICP’s result as an updated upper bound to
continue the BnB.

Until convergence.

Our error metric strictly follows that of the original ICP algorithm, that is, min-
imizing the L2 norm of the closest-point residual vector. We also show how a trim-
ming strategy can be utilized to handle outliers. With a small effort, one can also
extend the method with robust kernels or robust norms.

2.1 Related Work

There is a large volume of work published on ICP and other registration techniques.
We will focus below on some relevant Euclidean registration works addressing the
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local minimum issue in 2D or 3D.

Robustified Local Methods. To improve the robustness of ICP to poor initializa-
tions, previous work has attempted to enlarge the basin of convergence by smooth-
ing out the objective function. Fitzgibbon [2003] proposed the LM-ICP method where
the ICP error was optimized with the Levenberg–Marquardt algorithm [Moré, 1978].
Better convergence than ICP was observed, especially with the use of robust kernels.

It was shown by Jian and Vemuri [2005] that if the point sets are represented with
Gaussian Mixture Models (GMMs), ICP is related to minimizing the Kullback-Leibler
divergence of two GMMs. Although improved robustness to outliers and poor ini-
tializations could be achieved by GMM-based techniques [Jian and Vemuri, 2005; Tsin
and Kanade, 2004; Myronenko and Song, 2010; Campbell and Petersson, 2015], the
optimization was still based on local search. Earlier than these works, Rangarajan
et al. [1997] presented a SoftAssign algorithm which assigned Gaussian weights to
the points and applied deterministic annealing on the Gaussian variance. Granger
and Pennec [2002] proposed an algorithm named Multi-scale EM-ICP where an an-
nealing scheme on GMM variance was also used. Biber and Straßer [2003] developed
the Normal Distributions Transform (NDT) method, where Gaussian models were
defined for uniform cells in a spatial grid. Magnusson et al. [2009] experimentally
showed that NDT was more robust to poor initial alignments than ICP.

Some methods extend ICP by robustifying the distance between points. For ex-
ample, Sharp et al. [2002] proposed the additional use of invariant feature descriptor
distance; Johnson and Sing [1999] exploited color distances to boost the performance.

Global Methods. To address the local minima problem, global registration meth-
ods have also been investigated. A typical family adopts stochastic optimization
such as Genetic Algorithms [Silva et al., 2005; Robertson and Fisher, 2002], Particle
Swam Optimization [Wachowiak et al., 2004], Particle Filtering [Sandhu et al., 2010]
and Simulated Annealing schemes [Blais and Levine, 1995; Papazov and Burschka,
2011]. While the local minima issue is effectively alleviated, global optimality cannot
be guaranteed and initializations still need to be reasonably good as otherwise the
parameter space is too large for the heuristic search.

Another class of global registration methods introduces shape descriptors for
coarse alignment. Local descriptors, such as Spin Images [Johnson and Hebert, 1999],
Shape Contexts [Belongie et al., 2002], Integral Volume [Gelfand et al., 2005] and Point
Feature Histograms [Rusu et al., 2009] are invariant under specific transformations.
They can be used to build sparse feature correspondences, based on which the best
transformation can be found with random sampling [Rusu et al., 2009], greedy algo-
rithms [Johnson and Hebert, 1999], Hough Transforms [Woodford et al., 2014] or BnB
algorithms [Gelfand et al., 2005; Bazin et al., 2012]. Global shape descriptors, such as
Extended Gaussian Images (EGI) [Makadia et al., 2006], can be used to find the best
transformation maximizing descriptor correlation. These methods are often robust
and can efficiently register surfaces where the descriptor can be readily computed.
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Random sampling schemes such as RANSAC [Fischler and Bolles, 1981] can also
be used to register raw point clouds directly. Irani and Raghavan [1999] randomly
sampled 2-point bases to align 2D point sets using similarity transformations. For 3D,
Aiger et al. [2008] proposed a 4PCS algorithm that sampled coplanar 4-points, since
congruent coplanar 4-point sets can be efficiently extracted with affine invariance.

Globally Optimal Methods. Registration methods that guarantee optimality have
been published in the past, albeit in a smaller number. Most of them are based
on BnB algorithms. For example, geometric BnB has been used for 2D image pattern
matching [Breuel, 2003; Mount et al., 1999; Pfeuffer et al., 2012]. These methods share
a similar structure with ours: given each transformation sub-domain, determine for
each data point the uncertainty region, based on which the objective function bounds
are derived and the BnB search is applied. However, despite uncertainty region com-
putation with various 2D transformations has been extensively explored, extending
them to 3D is often impractical due to the heightened complexity [Breuel, 2003].

For 3D registration, Li and Hartley [2007] proposed using a Lipschitzized L2

error function that was minimized by BnB. However, this method makes unrealistic
assumptions that the two point clouds are of equal size and that the transformation
is a pure rotation. Olsson et al. [2009] obtained the optimal solution to simultaneous
point-to-point, point-to-line and point-to-plane registration using BnB and bilinear
relaxation of rotation quaternions. This method, although related to ours, requires
known correspondences. Bustos et al. [2014] proposed searching SO(3) space for
optimal 3D geometric matching, assuming known translation. Efficient run-times
were achieved using stereographic projection techniques.

Some optimal 3D registration methods assume a small number of putative cor-
respondences, and treat registration as a correspondence outlier removal problem.
For example, to minimize the overall pairwise distance error, Gelfand et al. [2005]
applied BnB to assign one best corresponding model point for each data point. A
similar idea using pairwise consistency was proposed by Enqvist et al. [2009], where
the inlier-set maximization was formulated as an NP-hard graph vertex cover prob-
lem and solved using BnB. Using angular error, Bazin et al. [2012] solved a similar
correspondence inlier-set maximization problem via SO(3) space search assuming
known translation. Enqvist and Kahl [2008] optimally solved camera pose in SE(3)
via BnB. However, the key insight is that with pre-matched correspondences, their
pairwise constraint (also used in [Enqvist et al., 2009]) enabled a single translation
BnB in R3 to solve the SE(3) problem.

In this chapter, we optimally solve the 3D Euclidean registration problem with
both rotation and translation. The proposed Go-ICP method is able to work directly
on raw sparse or dense point clouds (which may be sub-sampled only for reasons
of efficiency), without the need for a good initialization or putative correspondences.
The method is related to the idea of SO(3) space search, as proposed in [Hartley
and Kahl, 2007; Li and Hartley, 2007] and extended in [Ruland et al., 2012; Bazin
et al., 2012; Yang et al., 2014], etc. We extend the 3-dimensional SO(3) search to
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6-dimensional SE(3) search, which is much more challenging.

2.2 Problem Formulation

In this work, we define the L2-norm registration problem in the same way as in the
standard point-to-point ICP algorithm. Let two 3D point clouds X = {xi}, i = 1, ..., N
and Y = {yj}, j = 1, ..., M, where xi, yj ∈ R3 are point coordinates, be the data point
cloud and the model point cloud respectively. The goal is to estimate a rigid motion
with rotation R ∈ SO(3) and translation t ∈ R3, which minimizes the following
L2-error E,

E(R, t) =
N

∑
i=1

ei(R, t)2 =
N

∑
i=1
‖Rxi + t− yj∗‖2 (2.1)

where ei(R, t) is the per-point residual error for xi. Given R and t, the point yj∗ ∈ Y
is denoted as the optimal correspondence of xi, which is the closest point to the
transformed xi in Y , i.e.,

j∗ = argmin
j∈{1,..,M}

‖Rxi + t− yj‖. (2.2)

Note the short-hand notation used here: j∗ varies as a function of (R, t) and also
depends on xi.

Equation (2.1) and (2.2) actually form a well-known chicken-and-egg problem: if
the true correspondences are known a priori, the transformation can be optimally
solved in closed-form [Horn, 1987; Arun et al., 1987]; if the optimal transformation is
given, correspondences can also be readily found. However, the joint problem cannot
be trivially solved. Given an initial transformation (R, t), ICP iteratively solves the
problem by alternating between estimating the transformation with (2.1), and finding
closest-point matches with (2.2). Such an iterative scheme guarantees convergence to
a local minimum [Besl and McKay, 1992].

(Non-)Convexity Analysis. It is easy to see from (2.1) that the transformation func-
tion (denote it by Tx(p) for brevity) affinely transforms a point x with parameters
p, thus the residual function e(p) = d(Tx(p)) is convex provided that domain Dp is a
convex set (Condition 1) and d(x) = infy∈Y ‖x − y‖ is convex. Moreover, it has been
shown in [Boyd and Vandenberghe, 2004] and further in [Olsson et al., 2009] that
d(x) is convex if and only if Y is a convex set (Condition 2). For registration with pure
translation, Condition 1 can be satisfied as the domain Dp is R3. However, Y is often
a discrete point set sampled from complex surfaces and is thus rarely a convex set,
violating Condition 2. Therefore, e(p) is nonconvex. Figure 2.1 shows a 1D example.
For registration with rotation, even Condition 1 cannot be fulfilled, as the rotation
space induced by the quadratic orthogonality constraints RRT = I is clearly not a
convex set.
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Figure 2.1: Nonconvexity of the registration problem. Top: two 1D point sets {x1, x2}
and {y1, y2, y3}. Bottom-left: residual error (closest-point distance) for x1 as a func-
tion of translation t; the three dashed curves are ‖x1+t−yj‖ with j = 1, 2, 3 respec-
tively. Bottom-right: the overall L2 registration error; the two dashed curves are
ei(t)2 with i= 1, 2 respectively. The residual error functions are nonconvex, thus the
L2 error function is also nonconvex.

Outlier Handling. As is well known, L2-norm least squares fitting is susceptible
to outliers. A small number of outliers may lead to erroneous registration, even
if the global optimum is achieved. There are many strategies to deal with outliers
[Rusinkiewicz and Levoy, 2001; Champleboux et al., 1992; Fitzgibbon, 2003; Jian and
Vemuri, 2005; Chetverikov et al., 2005]. In this work, a trimmed estimator is used
to gain outlier robustness similar to [Chetverikov et al., 2005]. To streamline the
presentation and mathematical derivation, we defer the discussion to Section 2.5.3.
For now, we assume there are no outliers and focus on minimizing (2.1).

2.3 The Branch and Bound Algorithm

The BnB algorithm is a powerful global optimization technique that can be used to
solve nonconvex and NP-hard problems [Lawler and Wood, 1966]. Although existing
BnB methods work successfully for 2D registration, extending them to search SE(3)
and solve 3D rigid registration has been much more challenging [Breuel, 2003; Li and
Hartley, 2007]. In order to apply BnB to 3D registration, we must consider i) how
to parametrize and branch the domain of 3D motions (Section 2.3.1), and ii) how to
efficiently find upper bounds and lower bounds (Section 2.4).
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π

(a) Rotation domain

ξ

(b) Translation domain

Figure 2.2: SE(3) space parameterization for BnB. Left: the rotation space SO(3) is
parameterized in a solid radius-π ball with the angle-axis representation. Right: the
translation is assumed to be within a 3D cube [−ξ, ξ]3 where ξ can be readily set.
The octree data-structure is used to divide (branch) the domains and the yellow box
in each diagram represents a sub-cube.

2.3.1 Domain Parametrization

Recall that our goal is to minimize the error E in (2.1) over the domain of all feasible
3D motions (the SE(3) group, defined by SE(3) = SO(3) × R3). Each member of
SE(3) can be minimally parameterized by 6 parameters (3 for rotation and 3 for
translation).

Using the angle-axis representation, each rotation can be represented as a 3D vector
r, with axis r/‖r‖ and angle ‖r‖. We use Rr to denote the corresponding rotation
matrix for r. The 3x3 matrix Rr ∈ SO(3) can be obtained by the matrix exponential
map as

Rr = exp([ r ]×) = I+
[ r ]×sin ‖r‖
‖r‖ +

[ r ]2×(1−cos ‖r‖)
‖r‖2 (2.3)

where [ · ]× denotes the skew-symmetric matrix representation

[ r ]× =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 (2.4)

where ri is the ith element in r. Equation (2.3) is also known as the Rodrigues’ rotation
formula [Hartley and Zisserman, 2004a]. The inverse map is given by the matrix
logarithm as

[ r ]× = log Rr =
‖r‖

2 sin ‖r‖ (Rr − RT
r ) (2.5)

where ‖r‖ = arccos
(
(trace(Rr)−1)/2

)
. With the angle-axis representation, the en-

tire 3D rotation space can be compactly represented as a solid radius-π ball in R3.
Rotations with angles less than (or, equal to) π have unique (or, two) corresponding
angle-axis representations on the interior (or, surface) of the ball. For ease of manip-
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ulation, we use the minimum cube [−π, π]3 that encloses the π-ball as the rotation
domain.

For the translation part, we assume that the optimal translation lies within a
bounded cube [−ξ, ξ]3, which may be readily set by choosing a large number for ξ.

During BnB search, initial cubes will be subdivided into smaller sub-cubes Cr, Ct

using the octree data-structure and the process is repeated. Figure 2.2 illustrates our
domain parametrization.

2.4 Bounding Function Derivation

For our 3D registration problem, we need to find the bounds of the L2-norm error
function used in ICP within a domain Cr × Ct. Next, we will introduce the concept
of an uncertainty radius as a mathematical preparation, then derive our bounds based
on it.

2.4.1 Uncertainty Radius

Intuitively, we want to examine the uncertainty region of a 3D point x perturbed by
an arbitrary rotation r ∈ Cr or a translation t ∈ Ct. We aim to find a ball, characterized
by an uncertainty radius, that encloses such an uncertainty region. We will use
the first two lemmas of [Hartley and Kahl, 2009] in the following derivation. For
convenience, we summarize both lemmas in a single Lemma shown below.

Lemma 2.1. For any vector x and two rotations Rr and Rr0 with r and r0 as their angle-axis
representations, we have

∠(Rrx, Rr0 x) 6 ∠(Rr, Rr0) 6 ‖r− r0‖, (2.6)

where ∠(Rr, Rr0) = arccos
(
(trace(RT

r Rr0)−1)/2
)

is the angular distance between rota-
tions.

The second inequality in (2.6) means that the angular distance between two ro-
tations on the SO(3) manifold is less than the Euclidean vector distance of their
angle-axis representations in R3. Based on this Lemma, uncertainty radii are given
as follows.

Theorem 2.1. (Uncertainty radius) Given a 3D point x, a rotation cube Cr of half side-length
σr with r0 as the center and examining the maximum distance from Rrx to Rr0 x, we have
∀r ∈ Cr,

‖Rrx− Rr0 x‖62 sin(min(
√

3σr/2, π/2))‖x‖ .
=γr. (2.7)

Similarly, given a translation cube Ct with half side-length σt centered at t0, we have ∀t ∈ Ct,

‖(x + t)− (x + t0)‖ 6
√

3σt
.
= γt. (2.8)
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Figure 2.3: Distance computation from Rrx to Rr0 x used in the derivation of the
rotation uncertainty radius.

Proof: Inequality (2.7) can be derived from

‖Rrx− Rr0 x‖ (2.9)

= 2 sin(∠(Rrx, Rr0 x)/2)‖x‖ (2.10)

6 2 sin(min(∠(Rr, Rr0)/2, π/2))‖x‖ (2.11)

6 2 sin(min(‖r− r0‖/2, π/2))‖x‖ (2.12)

6 2 sin(min(
√

3σr/2, π/2))‖x‖ (2.13)

where (2.10) is illustrated in Figure 2.3. Inequalities (2.11), (2.12) are based on Lemma
1, and (2.13) is from the fact that r resides in the cube.

Inequality (2.8) can be trivially derived via ‖(x + t)− (x + t0)‖ = ‖t− t0‖ 6
√

3σt.

We call γr the rotation uncertainty radius, and γt the translation uncertainty ra-
dius. They are depicted in Figure 2.4. Note that γr is point-dependent, thus we
use γri to denote the rotation uncertainty radius at xi and the vector γr to represent
all γri. Based on the uncertainty radii, the bounding functions are derived in the
following section.

2.4.2 Bounding the L2 Error

Given a rotation cube Cr centered at r0 and a translation cube Ct centered at t0, we
will first derive valid bounds of the residual ei(R, t) for a single point xi.

The upper bound of ei can be easily chosen by evaluating the error at any (r, t) ∈
Cr × Ct. Finding a suitable lower bound for the L2 error is a harder task. From
Section 2.4.1 we know that, with rotation r ∈ Cr (or, translation t ∈ Ct), a transformed
point xi will lie in the uncertainty ball centered at Rr0 xi (or, xi + t0) with radius γri
(or, γt). For both rotation and translation, it therefore lies in the uncertainty ball
centered at Rr0 xi + t0 with radius γri + γt. Now we need to consider the smallest
residual error that is possible for xi. We have the following theorem, which is the
cornerstone of the proposed method.
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γr

O

(a) Rotation uncertainty radius

γt

(b) Translation uncertainty radius

Figure 2.4: Uncertainty radii at a point. Left: rotation uncertainty ball for Cr (in red)
with center Rr0 x (blue dot) and radius γr. Right: translation uncertainty ball for Ct
(in red) with center x + t0 (blue dot) and radius γt. In both diagrams, the uncertainty
balls enclose the range of Rrx or x + t (in green).

Theorem 2.2. (Bounds of per-point residuals) For a 3D motion domain Cr × Ct centered at
(r0, t0) with uncertainty radii γri and γt, the upper bound ei and the lower bound ei of the
optimal registration error ei(Rr, t) at xi can be chosen as

ei
.
= ei(Rr0 , t0), (2.14)

ei
.
= max

(
ei(Rr0 , t0)− (γri+γt), 0

)
. (2.15)

Proof: The validity of ei is obvious: error ei at the specific point (r0, t0) must be larger
than the minimal error within the domain, i.e., ei(Rr0 , t0) > min∀(r,t)∈(Cr×Ct) ei(Rr, t).
We now focus on proving the correctness of ei.

As defined in (2.2), the model point yj∗ ∈ Y is closest to (Rrxi + t). Let yj∗0 be the
closest model point to Rr0 xi + t0. Observe that, ∀(r, t) ∈ (Cr × Ct),

ei(Rr, t)

=‖Rrxi+t−yj∗‖ (2.16)

=‖(Rr0 xi+t0−yj∗)+ (Rrxi−Rr0 xi)+(t−t0)‖ (2.17)

>‖Rr0 xi+t0−yj∗‖−(‖Rrxi−Rr0 xi‖+‖t−t0‖) (2.18)

>‖Rr0 xi+t0−yj∗‖−(γri+γt) (2.19)

>‖Rr0 xi+t0−yj∗0‖−(γri+γt) (2.20)

= ei(Rr0 , t0)−(γri+γt), (2.21)

where (2.17) trivially involves introducing two auxiliary elements Rr0 x and t0, (2.18)
follows from the reverse triangle inequality1, (2.19) is based on the uncertainty radii

1|x + y| = |x− (−y)| > |x| − | − y| = |x| − |y|
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Rrx+t
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Figure 2.5: Deriving the lower bound. Any transformed data point Rrx+t lies within
the uncertainty ball (in yellow) centered at Rr0 x+t0 with radius γ = γr + γt. Model
points yj∗ and yj∗0 are closest to Rrx+t and Rr0 x+t0 respectively. It is clear that
a ≤ b ≤ c where a = ei and c = ei(Rr, t). See text for more details.

in (2.7) and (2.8), and (2.20) is from the closest-point definition. Note that yj∗ is not
fixed, but changes dynamically as a function of (Rr, t) as defined in (2.2).

According to the above derivation, the residual error ei(Rr, t) after perturbing a
data point xi by a 3D rigid motion composed of a rotation r ∈ Cr and a translation
t∈Ct will be at least ei(Rr0 , t0)−(γri+γt). Given that a closest point distance should
be non-negative, a valid lower bound ei for Cr×Ct is max

(
ei(Rr0 , t0)− (γri+γt), 0

)
6

min∀(r,t)∈(Cr×Ct) ei(Rr, t).

The geometric explanation for ei is as follows. Since yj∗0 is closest to the center
Rr0 xi + t0 of the uncertainty ball with radius γ = γri + γt, it is also closest to the
surface of the ball and ei is the closest distance between point cloud Y and the ball.
Thus, no matter where the transformed data point Rrxi + t lies inside the ball, its
closest distance to point cloud Y will be no less than ei. See Figure 2.5 for a geometric
illustration.

Summing the squared upper and lower bounds of per-point residuals in (2.14)
and (2.15) for all M points, we get the L2-error bounds in the following corollary.

Corollary 2.1. (Bounds of L2 error) For a 3D motion domain Cr × Ct centered at (r0, t0)
with uncertainty radii γri and γt, the upper bound E and the lower bound E of the optimal
L2 registration error E∗ can be chosen as

E .
=

M

∑
i=1

ei
2 =

M

∑
i=1

ei(Rr0 ,t0)
2, (2.22)

E .
=

M

∑
i=1

ei
2 =

M

∑
i=1

max
(
ei(Rr0 ,t0)−(γri+γt), 0

)2. (2.23)
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Algorithm 2.1: Go-ICP – the Main Algorithm: BnB search for optimal registra-
tion in SE(3)

Input: Data and model points; threshold ε; initial cubes Cr,Ct.
Output: Globally minimal error E∗ and corresponding r∗, t∗.

1 Put Cr into priority queue Qr.
2 Set E∗ = +∞.
3 loop
4 Read out a cube with lowest lower-bound Er from Qr.
5 Quit the loop if E∗−Er <ε.
6 Divide the cube into 8 sub-cubes.
7 foreach sub-cube Cr do
8 Compute Er for Cr and corresponding optimal t by calling

Algorithm 2.2 with r0, zero uncertainty radii, and E∗.
9 if Er < E∗ then

10 Run ICP with the initialization (r0, t).
11 Update E∗, r∗, and t∗ with the results of ICP.
12 end
13 Compute Er for Cr by calling Algorithm 2.2 with r0, γr and E∗.
14 if Er > E∗ then
15 Discard Cr and continue the loop;
16 end
17 Put Cr into Qr.
18 end
19 end

2.5 The Go-ICP Algorithm

Now that the domain parametrization and bounding functions have been specified,
we are ready to present the Go-ICP algorithm concretely.

2.5.1 Nested BnBs

Given Corollary 2.1, a direct 6D space BnB (i.e., branching each 6D cube into 26 = 64
sub-cubes and bounding errors for them) seems to be straightforward. However, we
find it prohibitively inefficient and memory consuming, due to the huge number of
6D cubes and point cloud transformation operations.

Instead, we propose using a nested BnB search structure. An outer BnB searches
the rotation space of SO(3) and solves the bounds and corresponding optimal trans-
lations by calling an inner translation BnB. In this way, we only need to maintain two
queues with significantly fewer cubes. Moreover, it avoids redundant point cloud
rotation operations for each rotation region, and takes the advantage that translation
operations are computationally much cheaper.

The bounds for both the BnBs can be readily derived according to Section 2.4.2.
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Algorithm 2.2: BnB search for optimal translation given rotation
Input: Data and model points; threshold ε; initial cube Ct; rotation r0; rotation

uncertainty radii γr, so-far-the-best error E∗.
Output: Minimal error E∗t and corresponding t∗.

1 Put Ct into priority queue Qt.
2 Set E∗t = E∗.
3 loop
4 Read out a cube with lowest lower-bound Et from Qt.
5 Quit the loop if E∗t −Et <ε.
6 Divide the cube into 8 sub-cubes.
7 foreach sub-cube Ct do
8 Compute Et for Ct by (2.26) with r0,t0 and γr.
9 if Et < E∗t then

10 Update E∗t = Et, t∗ = t0.
11 end
12 Compute Et for Ct by (2.27) with r0,t0,γr and γt.
13 if Et > E∗t then
14 Discard Ct and continue the loop.
15 end
16 Put Ct into Qt.
17 end
18 end

In the outer rotation BnB, for a rotation cube Cr the bounds can be chosen as

Er = min
∀t∈Ct

∑
i

ei(Rr0 , t)2, (2.24)

Er = min
∀t∈Ct

∑
i

max
(
ei(Rr0 , t)− γri, 0

)2, (2.25)

where Ct is the initial translation cube. To solve the lower bound Er in (2.25) with the
inner translation BnB, the bounds for a translation cube Ct can be chosen as

Et = ∑
i

max
(
ei(Rr0 , t0)− γri, 0

)2, (2.26)

Et = ∑
i

max
(
ei(Rr0 , t0)− (γri + γt), 0

)2. (2.27)

By setting all the rotation uncertainty radii γri in (2.26) and (2.27) to zero, the trans-
lation BnB solves Er in (2.24). A detailed description is given in Algorithm 2.1 and
Algorithm 2.2.

Search Strategy and Stop Criterion. In both BnBs, we use a best-first search strat-
egy. Specifically, each of the BnBs maintains a priority queue; the priority of a cube
is opposite to its lower bound. Once the difference between so-far-the-best error E∗
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Figure 2.6: Collaboration of BnB and ICP. Left: BnB and ICP collaboratively update
the upper bounds during the search process. Right: with the guidance of BnB, ICP
only explores un-discarded, promising cubes with small lower bounds marked up
by BnB.

and the lower bound E of the current cube is less than a threshold ε, the BnB stops.
Another possible strategy is to set ε = 0 and terminate the BnBs when the remaining
cubes are sufficiently small.

2.5.2 Integration with the ICP Algorithm

Lines 10–11 of Algorithm 2.1 show that whenever the outer BnB finds a cube Cr

that has an upper bound lower than the current best function value, it will call con-
ventional ICP, initialized with the center rotation of Cr and the corresponding best
translation.

Figure 2.6 illustrates the collaborative relationship between ICP and BnB. Under
the guidance of global BnB, ICP converges into local minima one by one, with each
local minimum having a lower error than the previous one, and ultimately reaches
the global minimum. Since ICP monotonically decreases the current-best error E∗ (cf.
[Besl and McKay, 1992]), the search path of the local ICP is confined to un-discarded,
promising sub-cubes with small lower bounds, as illustrated in Figure 2.6.

In this way, the global BnB search and the local ICP search are intimately inte-
grated in the proposed method. The former helps the latter jump out of local minima
and guides the latter’s next search; the latter accelerates the former’s convergence by
refining the upper bound, hence improving the efficiency.

2.5.3 Outlier Handling with Trimming

In statistics, trimming is a strategy to obtain a more robust statistic by excluding
some of the extreme values. It is used in Trimmed ICP [Chetverikov et al., 2005] for
robust point cloud registration. Specifically, in each iteration, only a subset S of the
data points that have the smallest closest distances are used for motion computation.
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Therefore, the registration error will be

ETr = ∑
i∈S

ei(R, t)2. (2.28)

To robustify our method with trimming, it is necessary to derive new upper and
lower bounds of (2.28). We have the following result.

Corollary 2.2. (Bounds of the trimmed L2 error) The upper bound ETr and lower bound ETr

of the registration error with trimming for the domain Cr × Ct can be chosen as

ETr .
= ∑

i∈P
ei

2, (2.29)

ETr .
= ∑

i∈Q
ei

2. (2.30)

where ei, ei are bounds of the per-point residuals defined in (2.14), (2.15) respectively, and P ,
Q are the trimmed point sets having smallest values of ei, ei respectively, with |P| = |Q|
= |S| = K.

Proof: The upper bound in (2.29) is chosen trivially. To see the validity of the lower
bound in (2.30), observe that ∀(r, t) ∈ Cr × Ct,

ETr = ∑
i∈Q

ei
2 ≤ ∑

i∈S
ei

2 ≤ ∑
i∈S

ei(Rr, t)2 = ETr. (2.31)

Based on this corollary, the corresponding bounds in the nested BnB can be read-
ily derived. As proved in [Chetverikov et al., 2005], iterations of Trimmed ICP de-
crease the registration error monotonically to a local minimum. Thus it can be di-
rectly integrated into the BnB procedure.

Fast Trimming. A straightforward yet inefficient way to do trimming is to sort
the residuals outright and use the K smallest ones. In this work, we employ the
Introspective Selection algorithm [Musser, 1997] which has O(N) performance in
both the worst case and average case.

Other Robust Extensions. In the same spirit as trimming, other ICP variants such
as [Champleboux et al., 1992; Masuda and Yokoya, 1994] can be handled. The method
can also be adapted to LM-ICP [Fitzgibbon, 2003], where the new lower-bound is
simply a robust kernelized version of the current one. It may also be extended to
ICP variants with Lp-norms [Bouaziz et al., 2013], such as the robustness-promoting
L1-norm.
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2.6 Experiments

We implemented the method in C++ and tested it on a standard PC with an In-
tel i7 3.4GHz CPU. In the experiments reported below, the point clouds were pre-
normalized such that all the points were within the domain of [−1, 1]3. Although
the goal was to minimize the L2 error in (2.1), the root-mean-square (RMS) error is
reported for better comprehension.

Closest-point distance computation. To speed up the closest distance computa-
tion, a kd-tree data structure can be used. We also provide an alternative solution
that is used more often in the experiments – a 3D Euclidean Distance Transform
(DT) [Fitzgibbon, 2003] used to compute closest distances for fast bound evalua-
tion2. A DT approximates the closest-point distances in the real-valued space by dis-
tances of uniform grids, and pre-computes them for constant-time retrieval (details
about our DT implementation can be found in the XXXXXXXXXXXXXXXXXXXXX).
Despite the DT can introduce approximation errors thus the convergence gap may
not be exactly ε, in the following experiments our method works very well with a
300×300×300 DT for optimal registration. Naturally, higher resolutions can be used
when necessary.

2.6.1 Optimality

To verify the correctness of the derived bounds and the optimality of Go-ICP, we
first use a convergence condition similar to [Hartley and Kahl, 2009] for the BnBs.
Specifically, we set the threshold of a BnB to be 0 and specify a smallest cube size at
which the BnB stops dividing a cube. In this way, we can examine the uncertainty in
the parameter space after the BnB stops. Both the DT and kd-tree are tested in these
experiments.

2.6.1.1 Synthetic Points

We first tested the method on a synthetically generated scene with simple objects.
Specifically, five 3D shapes were created: an irregular tetrahedron, a cuboid with
three different side-lengths, a regular tetrahedron, a regular cube, and a regular octa-
hedron. Note that the latter 4 shapes have self-symmetries. All the shapes were then
placed together, each with a random transformation, to generate clustered scenes.
Zero-mean Gaussian noise with standard deviation σ= 0.01 was added to the scene
points. We created such a scene as shown in Figure 2.7, and applied Go-ICP to
register the vertices of each shape to the scene points.

To test the rotation BnB, we set the parameter domain to be [−π, π]3 × [−1, 1]3

and the minimal volume of a rotation cube to 1.5E−5 (∼1 degree uncertainty). The
lower bound of a rotation cube was set to be the global lower bound of the invoked

2Local ICP is called infrequently so we simply use a kd-tree for it. The refined upper-bounds from
the found ICP solutions are evaluated via the DT for consistency.
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Figure 2.7: A clustered scene (black circles) and the registration results of Go-ICP for
the five shapes.

translation BnB. Thus the threshold of translation BnB is not very important and we
set it to a small value (0.0001×N where N is the data point number). The initial
errors E∗t of translation BnBs were set to infinity.

In all tests, Go-ICP produced correct results with both the DT and kd-tree. The
remaining rotation cubes using the DT and kd-tree respectively are almost visually
indistinguishable, and Figure 2.8 shows the results using the DT. It is interesting to
see that the remaining cubes formed 1 cluster for the irregular tetrahedron, 4 clusters
for the cuboid, 12 clusters for the regular tetrahedron, and 24 clusters for the regular
cube and octahedron. These results conform to the geometric properties of these
shapes and validated the derived bounds. Investigating shape self-similarity would
be a practical application of the algorithm. Moreover, Figure 2.9 shows some typical
remaining rotation domains on 2D slices of the rotation π-ball3. The non-convexity
of the problem can be clearly seen from the presence of many local minima. It can
also be seen that the remaining rotation domains using a DT and kd-tree are highly
consistent, and the optima are well contained by them.

The translation BnB can be easily verified by running it with rotations picked
from the remaining rotation cubes. The threshold was set to be 0, and the minimal
side-length of a translation cube was set to be 0.01. The last figure of Figure 2.8
shows a typical result.

3We chose the slices passing two randomly-selected optimal rotations plus the origin. Due to shape
symmetry, there may exist more than two optimal rotations on one slice.
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Figure 2.8: Remaining cubes of BnBs. The first five figures show the remaining cubes
in the rotation π-ball of the rotation BnBs, for an irregular tetrahedron, a cuboid
with three different side-lengths, a regular tetrahedron, a regular cube, and a regular
octahedron respectively. The last figure shows a typical example of remaining cubes
of a translation BnB, for the irregular tetrahedron. (Best viewed when zoomed in)

Figure 2.9: Remaining rotation domains of the outer rotation BnB on 2D slices of
the π-ball, for the synthetic points. Results using the DT and the kd-tree are within
magenta and green polygons, respectively. The white dots denote optimal rotations.
From left to right: a cuboid, a regular tetrahedron and a regular cube. The colors
on the slices indicate registration errors evaluated via inner translation BnB: red for
high error and blue for low error. (Best viewed when zoomed in)
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Figure 2.10: Remaining rotation domains of the outer rotation BnB on 2D slices of the
π-ball, for the bunny point clouds. The three slices pass through the optimal rotation
and the X-, Y-, Z-axes respectively. See also the caption of Figure 2.9. (Best viewed
when zoomed in)

2.6.1.2 Real Data

Similar experiments were conducted on real data. We applied our method to register
a bunny scan bun090 from the Stanford 3D dataset4 to the reconstructed model. Since
the model and data point clouds are of similar spatial extents, we set the parameter
domain to be [−π, π]3× [−0.5, 0.5]3 which is large enough to contain the optimal
solution. We randomly sampled 500 data points and did similar tests to those on
the synthetic points. The translation BnB threshold was set to 0.001×N, and the
remaining rotation cubes from the outer rotation BnB were similar to the first figure
in Figure 2.8 (i.e., , one cube cluster). Figure 2.10 shows the results on three slices of
the rotation π-ball.

Additionally, we recorded the bound and cube evolutions in the rotation BnB
which are presented in Figure 2.11. It can be seen that BnB and ICP collaboratively
update the global upper bound. Corresponding transformations for each global up-
per bound found by BnB and ICP are shown in Figure 2.12. Note that in the fourth
image the pose has been very close to the optimal one, which indicates that ICP may
fail even if reasonably good initialization is given.

Although the convergence condition used in this section worked successfully, we
found that using a small threshold ε of the bounds to terminate a BnB also works
well in practice. It is more efficient and produces satisfactory results. In the following
experiments, we used this strategy for the BnBs.

2.6.2 “Partial" to “Full" Registration and Camera Global Motion Estima-
tion

If a global, full point cloud model of an object or a scene is known a prior, then
given a partial point cloud of it scanned by a 3D camera, the global motion of the
camera can be estimated by registering the partial point cloud onto the full point

4http://graphics.stanford.edu/data/3Dscanrep/

http://graphics.stanford.edu/data/3Dscanrep/
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Figure 2.11: Evolution of the bounds (left) and cubes (right) in the rotation BnB with
a DT on the bunny point-sets. See text for details.
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Figure 2.12: Evolution of Go-ICP registration for the bunny dataset. The model
point cloud and data point cloud are shown in red and green respectively. BnB
and ICP collaboratively update the registration: ICP refines the solution found by
BnB and BnB guides ICP into the convergence basins of multiple local minima with
increasingly lower registration errors.

cloud model. In this section, we will use such partial and full point clouds to test the
proposed 3D registration algorithm and estimate camera global motion. We will first
analyze the performance of the proposed method on point clouds of some relatively
small objects, then will perform camera global motion estimation in relatively large
scenes.
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Figure 2.13: Running time histograms of Go-ICP with DTs for the bunny (left) and
dragon (right) point clouds.

2.6.2.1 Performance Analysis with Small Objects

The bunny and dragon models from the Stanford 3D dataset were used to test the
performance of Go-ICP by registering partially scanned point clouds to full 3D model
point clouds. All 10 partial scans of the bunny dataset were used as data point clouds.
For the dragon model, we selected 10 scans generated from different viewpoints as
data point clouds. The reconstructed bunny and dragon models were used as model
point clouds.

For each of these 20 scans, we first performed 100 tests with random initial rota-
tions and translations. The transformation domain to explore for Go-ICP was set to
be [−π, π]3×[−0.5, 0.5]3. We sampled N = 1000 data points from each scan, and set
the convergence threshold ε to be 0.001×N.

As expected, Go-ICP achieved 100% correct registration on all the 2 000 registration
tasks on the bunny and dragon models, with both the DT and kd-tree. All rotation
errors were less than 2 degrees and all translation errors were less than 0.01. With
a DT, the mean/longest running times of Go-ICP, in the 1 000 tests on 1 000 data
points and 20 000–40 000 model points, were 1.6s/22.3s for bunny and 1.5s/28.9s for
dragon. Figure 2.13 shows the running time histograms The running times with a
kd-tree were typically 40–50 times longer than that with the DT. The solutions from
using the DT and the kd-tree respectively were highly consistent (the largest rotation
difference was below 1 degree).

We then analyzed the running time of the proposed method under various set-
tings using the DT. We analyzed the influence of each factor by varying it while
keeping others fixed. Default factor settings: number of data points N = 1000, no
added Gaussian noise (i.e., standard deviation σ = 0) and convergence threshold
ε=0.001×N.

Effect of Number of Points. In this experiment, the running time was tested for
different numbers of points. Since the DT was used for closest-point distance re-
trieval, the number of model points does not significantly affect the speed of our
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Figure 2.14: Running time of the Go-ICP method with DTs on the bunny and dragon
point clouds with respect to different factors. The evaluation was conducted on 10
data point clouds with 100 random poses (i.e., , 1 000 pairwise registrations).

method. To test the running time with respect to different numbers of data points,
we randomly sampled the data point clouds. As presented in Figure 2.14, the run-
ning time manifested a linear trend since closest-point distance retrieval was O(1)
and the convergence threshold varied linearly with the number of data points.

Effect of Noise. We examined how the noise level impacted the running time by
adding Gaussian noise to both the data and model point clouds. The registration
results on the corrupted bunny point clouds are shown in Figure 2.15. We found that,
as shown in Figure 2.14, the running time decreased as the noise level increased (until
σ = 0.02). This is because the Gaussian noise (especially that added to the model
points) smoothed out the function landscape and widened the convergence basin of
the global minimum, which made it easier for Go-ICP to find a good solution.

Effect of Convergence Threshold. We further investigated the running time with
respect to the convergence threshold of the BnB loops. We set the threshold ε to
depend linearly on N, since the registration error is a sum over the N data points.
Figure 2.14 shows that the smaller the threshold is, the slower our method performs.
In our experiments, ε = 0.001× N was adequate to get a 100% success rate for the
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σ = 0.01 σ = 0.02 σ = 0.03

Figure 2.15: Registration with different levels of Gaussian noise.

Figure 2.16: Registration with high optimal error. Left: Gaussian noise was added
to the data point cloud to increase the RMS error. Right: the global minimum was
found at about 25s with a DT; the remainder of the time was devoted solely to in-
creasing the lower bound.

bunny and dragon point clouds. For cases when the local minima are small or close
to the global minimum, the threshold can be set smaller.

Effect of Optimal Error. We also tested the running time w.r.t. the optimal reg-
istration error. To increase the error, Gaussian noise was added to the data point
cloud only. As shown in Figure 2.14, the running time remained almost constant
when the RMS error was less than 0.03. This is because the gap between the global
lower bound and the optimal error was less than ε. Therefore, the running time de-
pended primarily on when the global minimum was found, that is, the termination
depended on the decrease of the upper bound. However, it takes longer to converge
if the final RMS error is higher. Figure 2.16 shows the bounds evolution for bunny
when the RMS error was increased to ∼ 0.04. As can be seen, the global minimum
was found at about 25s, with the remainder of the time devoted to increasing the lower
bound.
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Figure 2.17: Camera localization experiment. Top: 5 (out of 100) color and depth
image pairs of the scene. (The color images were not used) Middle: Corresponding
registration results. Note that the scene contains many similar structures, and the
depth images only cover small portions of the scene, which make the 3D registration
tasks very challenging. Bottom: Ground truth camera trajectories and the estimated
results. (We did not estimate the relative motion between two cameras; the camera
locations are connected with lines for better visualization)
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Figure 2.18: 3D object localization experiment. Left: a labelled object and its depth
image to generate the data point cloud. Middle: a scene depth image to generate the
model point cloud. Right: the registration result.

2.6.2.2 Camera Global Motion Estimation in a Large Scene

As previously mentioned, the global motion of the camera can be estimated by reg-
istering the partial point cloud onto the full point cloud model. This section tests the
proposed algorithm in such scenarios. In the following experiments, the transforma-
tion domain for exploration was set to be [−π, π]3 × [−1, 1]3.

We first tested our method on one sequence of the camera localization dataset
[Shotton et al., 2013]. The size of the office is approximately 5.5m2, and the sequence
contains 1 000 depth images taken by a Kinect depth camera moving smoothly in the
office over different locations. Figure 2.17 shows a sample color and depth image
pair, and a 3D model of the office scene. Note that the scene contains many similar
structures, and the depth images only cover small portions of the scene. Our goal was
to estimate the camera poses by registering the point clouds of the depth images onto
the 3D scene model, which were challenging tasks. We evenly sampled the sequence
to 100 depth images. Each depth image was then evenly sampled to 400 ∼ 600
points. We set our method to seek a solution with the registration error smaller than
0.0001× N, and the method registered the 100 point clouds with the mean/longest
running time of 32s/178s using a DT. The rotation errors and translation errors were
all below 5 degrees and 10cm. Five typical results are presented in Figure 2.17. The
last row of Figure 2.17 compares the ground-truth camera trajectories provided by
the dataset and the results by our method. It can be seen that the trajectory from out
method conforms quite well to the ground truth.

To further test the proposed method, we used the RGB-D Object Dataset [Lai
et al., 2011] to perform the object localization experiment in a relatively large scene.
As shown in Figure 2.18, a baseball cap was used as the object being localized and
its depth image was taken to generate data point cloud, and a scene depth image
was used to generate the model point cloud. Since the two depth images are taken
from different views points, the model point clouds only cover a part of the data
point cloud. Therefore, we need to handle the outliers in the data points whose cor-
respondences are missing, and trimming was employed as described in Section 2.5.3.
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Figure 2.19: Sparse-to-dense 3D point cloud registration. Left: the color image with
extracted line segments for single view 3D reconstruction. Middle: the initial 3D reg-
istration (in green), the result of ICP (in cyan) and the result of Go-ICP (in blue) (the
lines are for visualization purposes only). Right: the depth image with a projection
of the registered 3D points from ICP (in cyan) and Go-ICP (in blue).

We randomly sampled N = 100 points from the cap model, and set the trimming
percentage and threshold to be ρ = 10% and ε = 0.00003× K respectively. Go-ICP
successfully registered the cap point cloud in 42 seconds with a DT. It can be seen
from Figure 2.18 that the pose of the cap accurately estimated.

The proposed method can also be used to register a sparse point cloud from,
e.g., the reconstructed feature points from a 2D color camera. Figure 2.19 shows an
example where 12 points are reconstructed, and the goal was to register them onto a
dense point cloud from a depth camera. We found that ICP often failed to find the
correct registration when the pose difference between the cameras was reasonably
large. To the best of our knowledge, few methods can perform such sparse-to-dense
registration reliably without human intervention, due to the difficulty of building
putative correspondences. Setting ε to be 0.00001× N, Go-ICP with a DT found the
optimal solution in less than 1s. Note that the surfaces are not exactly perpendicular
to each other.

2.6.3 “Partial” to “Partial” Registration and Camera Relative Motion Esti-
mation

In this section, we tested the proposed method on partially overlapping point clouds.
The data points in regions that are not overlapped by the other model point cloud
should be treated as outliers, as their correspondences are missing. Trimming was
employed to deal with outliers.

We used 10 point cloud pairs shown in Figure 2.20 to test Go-ICP with trimming.
These point clouds were generated by different scanners and with different noise lev-
els. The bunny, dragon and buddha models are from the Standford 3D dataset. The
chef and dinosaur models are from [Mian et al., 2006]. The denture was generated
with a structured light 3D scanner5. The owl status is from [Bouaziz et al., 2013] and

5http://www.david-3d.com/en/support/downloads

http://www.david-3d.com/en/support/downloads
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Figure 2.20: Registration with partial overlap. Go-ICP with the trimming strategy
successfully registered the 10 point cloud pairs with 100 random relative poses for
each of them. The point clouds in red and blue are denoted as point cloud A and
point cloud B, respectively. The trimming settings and running times are presented
in Table 2.1.

Table 2.1: Running time (in seconds) of Go-ICP with DTs for the registration of the
partially overlapping point clouds in Figure 2.20. 100 random relative poses were
tested for each point cloud pair and 1 000 data points were used. ρ is the trimming
percentage.

.

A→B B→A
ρ mean/max time ρ mean/max time

Bunny 10% 0.81 / 10.7 10% 0.49 / 7.25
Dragon 20% 2.99 / 43.5 40% 8.72 / 72.4
Buddha 10% 0.71 / 11.3 10% 0.60 / 14.8
Chef 20% 0.45 / 4.47 30% 0.52 / 3.79
Dinosaur 10% 2.03 / 23.5 10% 1.65 / 26.1
Owl 40% 12.5 / 87.5 40% 13.4 / 75.0
Denture 30% 6.74 / 74.7 30% 4.24 / 68.1
Room 30% 9.82 / 73.3 30% 18.4 /107.3
Bowl 20% 3.19 / 20.3 30% 3.52 / 25.3
Loom 30% 8.64 / 67.2 20% 5.96 / 44.6

the room scans are from [Shotton et al., 2013]. The bowl and loom point clouds were
collected by us with a Kinect. The overlapping ratios of the point cloud pairs are
between 50% ∼ 95%.

For each of the 10 point cloud pairs, we generated 100 random relative poses and
registered the two point clouds to each other. This lead to 2 000 registration tasks.
The translation domain to explore for Go-ICP was set to be [−π, π]3 × [−0.5, 0.5]3.
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We chose the trimming percentages ρ as in Table 2.1, sampled N = 1000 data points
for each registration, and set all the convergence thresholds to ε = 0.001× K where
K = (1− ρ)× N. Our method correctly registered the point clouds in all these tasks.
All the rotation errors were less than 5 degrees and translation errors were less than
0.05 compared to the manually-set ground truths. The running times using DTs are
presented in Table 2.1. In general, it takes the method a longer time compared to the
outlier-free case due to 1) the emergence of additional local minima induced by the
outliers and 2) the time-consuming trimming operations.

Choosing trimming percentages. In these experiments, each parameter ρ was cho-
sen by visually observing the two point clouds and roughly guessing their non-
overlapping ratios. The results were not very sensitive to ρ (e.g., setting ρ as 5%, 10%
and 20% all led to a successful registration for bunny). If no rough guess is avail-
able, one can gradually increase ρ until a measure such as the inlier number or
RMS error attains a set value, or apply the automatic overlap estimation proposed in
[Chetverikov et al., 2005].

2.7 Conclusion

We have introduced a globally optimal solution to Euclidean registration in 3D, under
the L2-norm closest-point error metric originally defined in ICP. The method is based
on the Branch-and-Bound (BnB) algorithm, thus global optimality is guaranteed re-
gardless of the initialization. The key innovation is the derivation of registration error
bounds based on the SE(3) geometry.

The proposed Go-ICP algorithm is especially useful when an exactly optimal
solution is highly desired or when a good initialization is not reliably available. For
practical scenarios where real-time performance is not critical, the algorithm can be
readily applied or used as an optimality benchmark.

In the future work, we would like to investigate tighter bounds to further improve
the efficiency. We also plan to test other outlier handling strategies such as those
mentioned in Section 2.5.3).



Chapter 3

2D Camera Motion Estimation via
Optimal Inlier-set Maximization

2D Color camera relative pose estimation, or essential matrix estimation, is a basic
building block for Structure from Motion (SfM). Given two views of a rigid scene
from a calibrated perspective camera, the task is to estimate the relative pose or mo-
tion between the two views. Essential matrix can be estimated with image point
correspondences using epipolar geometry. In reality, correspondence outliers are
ubiquitous. For instance, natural or man-made scenes often contain similar struc-
tures, flat (and ambiguous) regions, repetitive patterns etc., making flawless feature
matching nearly impossible.

To deal with outliers in the context of multiple-view geometry, RANSAC [Fischler
and Bolles, 1981] and its variants have played a major role. These methods, which are
based on random sampling, cannot provide an optimality guarantee, and the inlier
sets they find often vary from time to time. Moreover, in most RANSAC algorithms
(e.g. [Goshen and Shimshoni, 2008; Raguram et al., 2013]), to ensure efficiency, an
algebraic solver (e.g. the 5-point method [Nistér, 2004; Li and Hartley, 2006]) and the
8-point method [Longuet-Higgins, 1981; Hartley, 1997]) is often adopted to compute
tentative estimation, followed by a thresholding stage using geometric reprojection
error or Sampson error. The apparent inconsistency here, i.e. algebraic solver versus
geometric threshold, can lead to inferior estimate.

In contrast, this chapter seeks a consistent, and globally optimal solution to essen-
tial matrix estimation, based on meaningful geometric error. By optimal, we adopt
the consensus set maximization idea of RANSAC, i.e. to find the maximal-sized in-
lier set that is compatible with the input image measurements. To distinguish inliers
from outliers, we use angular reprojection error. With a calibrated camera, it is nat-
ural to use angular reprojection error, because a calibrated camera behaves just like
an angle measurement device, and every image point (represented by a unit vector)
gives the actual viewing angle.

To achieve globally maximal inlier-set, a naive way would be exhaustively enu-
merating all possible combinations of inliers/outliers. However, this soon becomes
intractable as combinations grow exponentially with point number. No efficient
solver to this combinational problem exists to our knowledge. Our idea in this chap-
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ter is: rather than searching over all discrete combinations of inliers, we search the
entire continuous parameter space of essential matrices. To this end, it is necessary to
find a suitable domain representation (parametrization) of the space, with which the
bounds can be easily derived and efficiently evaluated.

The proposed method is based on systematically searching two (reduced) rotation
spaces using branch-and-bound (BnB). It is inspired by the rotation search technique
proposed by Hartley and Kahl [2007], which has been used in several vision problems
[Heller et al., 2012; Bazin et al., 2012; Yang et al., 2013b]. To minimize the L∞-norm
of angular errors, Hartley and Kahl [2007] uses BnB to recursively search SO(3) with
elegant bounding. However, L∞-optimization is known to be extremely vulnerable
to outliers, and Hartley and Kahl [2007] assumes outlier-free correspondences. In
contrast, our method works in the presence of outliers.

3.1 Related Work

Our method is closely related to [Hartley and Kahl, 2007], and extends [Hartley and
Kahl, 2007] to optimal inlier-set maximization which is non-trivial. A key insight for
[Hartley and Kahl, 2007] to applying rotation search to essential matrix estimation is
that, given rotation, the translation can be optimally solved with convex optimization
(SOCP/LP). However, optimally solving the translation maximizing inlier-set cardi-
nality is not trivial. The optimal essential matrix problem considered here is more
challenging. Method of Bazin et al. [2012] achieves inlier-set maximization with ro-
tation search, however translation is assumed to be known. In contrast, we optimally
solve the problem by searching the essential manifold with BnB, based on a novel
parametrization scheme.

There have been some research efforts devoted to optimal essential matrix esti-
mation with inlier-set maximization criterion [Enqvist et al., 2011; Enqvist and Kahl,
2009]. Most closely related to our method is [Enqvist et al., 2011] in which a brute-
force search method is proposed using triangulation feasibility test. The solution
is exhaustively searched over the discretized parameter space formed by two unit
spheres, and GPU implementation is used to speed up the computation. In [Enqvist
and Kahl, 2009], double pairs of correspondences are used, from which camera pose
is found by searching the two epipoles via BnB. An approximation is made to solve an
otherwise NP-hard problem (minimum vertex cover), which compromises the global
optimality guarantee. The closed-form bounding functions we use in this chapter are
inspired by [Enqvist et al., 2011] (with necessary extension); however, we introduce
other innovations in both parametrization scheme and optimization technique. By
our method, an exact optimality can be achieved.

Some approaches use branch-and-bound methods for finding globally optimal
fundamental matrix [Li, 2009; Zheng et al., 2011]. In particular, inlier-set is optimally
maximized by Li [2009] with an algebraic error. Geometrically meaningful error is
investigated by Zheng et al. [2011], but the goal is optimal error minimization assum-
ing no outlier. These works discuss uncalibrated cases only, where the underlying
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Euclidean constraints of essential matrices are not exploited.
Another line of related work is outlier removal using convex optimization [Sim

and Hartley, 2006; Ke and Kanade, 2007; Li, 2007a; Olsson et al., 2010]. These meth-
ods are able to detect potential outliers with respect to a given threshold. However,
the goal is not inlier-set maximization and outliers may be removed at the expense of
losing some true inliers. Moreover, in SfM they assume known rotation to formulate
the problem to be (quasi-)convex. Our work is also related to the study of SfM with-
out pre-built correspondences [Dellaert et al., 2000; Makadia et al., 2007], in a sense
that we all compute the motion yielding most agreeable correspondences.

3.2 Essential Manifold Parametrization

A rigid motion comprises rotation and translation. As such, an essential matrix
E relates to a 3D rotation R̂ ∈ SO(3) and a 3D translation t̂ ∈ R3 from the first
camera to the second one by E = [ t̂ ]×R̂ where [ · ]× denotes the skew-symmetric
matrix representation. Essential matrix can only be determined up to an unknown
scale. To resolve this scale indeterminacy one can set the length of t̂, i.e. ‖t̂‖ to be
fixed (e.g. to be 1). Therefore, we have t̂ ∈ S2, i.e. a 2-sphere embedded in R3.
In this way the essential manifold can be parameterized with 5 degrees of freedom
(dofs) in SO(3) × S2. In this chapter, we advocate different coordinate system and
parametrization scheme to facilitate our BnB algorithm.

In solving the relative pose problem, one has the freedom to arbitrarily choose a
coordinate system as the world frame. Different from a common practice which sets
the first camera matrix to be [I | 0], we fix the first camera’s center at the origin, i.e.
C ≡ 0, and fix the second camera’s center at C′ ≡ [0, 0, 1]T on the Z-axis.1 We use R
to denote the absolute orientation of the first camera (relative to the world frame), and
R′ for the second camera. Then, it is easy to see that, under this configuration the
camera relative motion (R̂, t̂) and the essential matrix can be written as

R̂ = R′RT (3.1)

t̂ = −R′C′ = −R′[0, 0, 1]T (3.2)

E = [−R′C′]×R′RT = R′[−C′]×RT = R′

 0 1 0
−1 0 0
0 0 0

RT. (3.3)

Using two absolute rotations (R, R′) ∈ SO(3)× SO(3) to represent essential ma-
trix is clearly an over-parametrization, because the essential manifold has only five
dofs. The excess one dof can further be removed, as we will show next.

Observe that, under our special camera setup, any rotation about Z-axis (i.e. the
axis joining the two camera centers) applied to both cameras will leave the essential

1Note that, the second camera’s center can be set on either X-, Y-, or Z-axis; the resultant parametriza-
tion using X- or Y-axis can be similarly derived. We opt for Z-axis for the convenience of closed-form
bounding function evaluation (cf. Section 3.4.3).
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Figure 3.1: The essential manifold is parameterized as the product space of a solid
2D disk D2

π and a solid 3D ball B3
π, corresponding to rotations of the first and second

camera respectively. (Note that the disk is thickened to aid in visualization)

matrix invariant. In other words, they form an equivalence class which is a member of
the 2D rotation group SO(2). In order to “factor out" these Z-axis rotations, we apply
group quotient operator to one of the two SO(3) groups as SO(3)/SO(2). In this way we
can represent the essential space as SO(3)×

(
SO(3)/SO(2)

)
, i.e. the product space of

SO(3) – rotation space for one camera, and SO(3)/SO(2) for the other camera. Note
that there are still equivalence classes remaining, and each of them corresponds to
four relative pose configurations [Hartley and Zisserman, 2004b; Tron and Daniilidis,
2014]. It is necessary to leave these equivalence classes there, as only one (unknown)
configuration out of the four depicts the true relative pose.

We adopt the angle-axis representation for 3D rotations, with which any rota-
tion is representable as a point in a solid radius-π ball in 3-space, i.e. B3

π. Thus
SO(3) can be parameterized as B3

π. The remaining problem is how to parameterize
SO(3)/SO(2). It is known in topology [Lee, 2010] that SO(3)/SO(2) is homeomor-
phic to S2. Instead of this, we directly parameterize SO(3)/SO(2) using angle-axis
representation of camera rotation, as detailed in the following.

With angle-axis representation, it is easy to verify that in our setup, the X-Y plane
of B3

π effectively encodes all “Z-axis-free" rotations we need. This is because the
X-Y plane of B3

π contains all rotations whose Z-axis components are zero while X-
axis and Z-axis components are arbitrary. Concretely, let v be the angle-axis vector
of R, i.e. R = exp([ v ]×), we avoid the freedom of Z-axis rotation by setting v3,
the 3rd element of vector v, to be 0. Thus our search space for the first rotation
R = exp([v1, v2, 0]×) is reduced to the 2D disk D2

π on the equator plane of the π-ball.
Now, we have “squeezed" a 3D radius-π ball to a flat 2D radius-π disk in the X-Y
plane.

Without loss of generality, we assume the first camera’s rotation R is of 2-dof and
“Z-axis free"; we denote this as v ∈ D2

π. Let R′ = exp([ v′ ]×), then the essential
manifold is parameterized by 5D vectors (v, v′) ∈ D2

π × B3
π. See Figure 3.1 for an

illustration. To recover a 3×3 essential matrix E from (v, v′), one simply needs to
recover rotations matrices (R, R′) from (v, v′), then compute E with (3.3).
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Comparison to previous work. Some previous works such as [Helmke et al., 2007;
Subbarao et al., 2008] base their parametrization on Singular Value Decomposition
(SVD) of essential matrix. Although these representations also originate from SO(3)×
SO(3), they do not provide the geometric interpretation of their parameters, and are
not suitable for our BnB search. Recently, an concurrent independent work of Tron
and Daniilidis [2014] chooses the same coordinate system as ours and uses the essen-
tial matrix formulation in (3.3). One difference between [Tron and Daniilidis, 2014]
and our work is that, [Tron and Daniilidis, 2014] computes geodesic distance be-
tween two equivalence classes of two 6D SO(3)×SO(3) elements, while we propose
an explicit parametrization of the 5D manifold SO(3)×

(
SO(3)/SO(2)

)
.

3.3 Optimization Criteria

With the parametrization described above, we are ready to formally define the opti-
mality, and formulate the problem we will solve.

Let (x, x′) be a putative feature correspondence pair represented as unit 3D vec-
tors, both corresponding to an unknown 3D scene point X ∈ R3. Note (x, x′) may be
subject to outliers and measurement noise. We represent the two cameras by their ab-
solute orientations R and R′, which jointly encode the essential matrix E = E(R, R′).
The epipolar equation x′TEx = 0 gives an algebraic error metric for measuring the
optimality of an essential matrix. In this work, we will use the geometrically mean-
ingful angular reprojection error, which is defined as

](RTx, R′Tx′) .
= min

X
max

(
∠(RTx, X),∠(R′Tx′, X− C′)

)
= min

X
max

(
∠(x, RX),∠(x′, R′(X− C′))

) (3.4)

where ∠(· , ·) denotes the angle between two vectors, and C′ ≡ [0, 0, 1]T. We use the
symbol ](· , ·) to denote the angular reprojection error, which is the maximum of the
two angular residuals.

With this angular error definition, there are two options to define the optimality
of essential matrix E(R, R′), corresponding to the following two problems.

Problem 3.1 (Inlier-set cardinality maximization). Given feature correspondences (xi, x′i)
and a prescribed angular error tolerance ε, the optimal essential matrix E(R, R′) maximizes
the cardinality of the inlier set (or consensus set) as

max
R,R′
|I| , s.t. ∀i ∈ I , ](RTxi, R′Tx′i) ≤ ε (3.5)

where I denotes the inlier set and | · | represents cardinality. A pair of correspondences
(xi, x′i) is considered to be an inlier with respect to ε if ](RTxi, R′Tx′i) ≤ ε.

Problem 3.2 (Angular reprojection error minimization). Given feature correspondences
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(xi, x′i), the optimal essential matrix E(R, R′) is found by

min
R,R′
‖e‖, s.t. ei = ](RTxi, R′Tx′i) (3.6)

where ‖ · ‖ is a certain norm.

Solving Problem 3.2 gives rise to an exact essential matrix minimizing angular
error; however the result is sensitive to outliers. The goal of this work is to optimally
solve Problem 3.1 with an exact inlier-set cardinality, thus it is intrinsically robust.
Note that the solution to Problem 3.1 may not be unique. To solve essential matrix
both robustly and exactly, one can solve Problem 3.2 with existing methods (e.g.
[Hartley and Kahl, 2007]) after obtaining the true inliers with the proposed method.

Although global optimization for Problem 3.2 is studied in [Hartley and Kahl,
2007], solving the cardinality maximization problem globally optimally is still ex-
tremely difficult due to its obvious combinatorial and discrete nature. In the fol-
lowing, we approach the problem as a continuous optimization, and solve it by BnB
search over the continuous parameter domain – the 5D product space D2

π ×B3
π.

3.4 Branch and Bound over D2
π ×B3

π

Recall that the goal is to globally maximize the inlier-cardinality as shown in (3.5).
We treat this problem as continuous optimization and solve it via 5D space BnB. A
high-level description of our method is given below. For the ease of manipulation,
we use a 5D cube C5

π with half side-length π to enclose the D2
π × B3

π space2. The
initial cube C5

π can be divided into smaller cubes. For each such cube, we compute
the lower-bound (LB) as well as the upper-bound (UB) of the inlier-set cardinality for
all rotations within it. LB and UB will be compared with the best value found so far,
then this cube will be discarded or sub-divided. In the following we will denote a
cube by Cσ(R̄, R̄′), where σ is its half side-length, and R̄, R̄′ are the center rotations
of the corresponding 2D square and 3D cube respectively.

As is true for any BnB algorithm, the key to success is to find effective and efficient
bounds. Below we will explain how we achieve this.

3.4.1 Lower-bound Computation

Finding a lower-bound for the cardinality maximization problem is relatively easy.
It can be done simply by evaluating the cardinality function at a single point within
the cubical domain. Obviously, the cardinality obtained in this way is necessarily
a lower-bound, as it must not be greater than the true maximal cardinality with
rotation in that cube.

The following procedure computes a lower-bound for a cube Cσ(R̄, R̄′) with re-
spect to a prescribed angular error tolerance ε.

2The points outside D2
π × B3

π represent the same transformation at some point inside. This does
not matter for our purpose and it brings no difficulty for the optimization. If one sub-cube in C5

π falls
entirely outside D2

π ×B3
π during the BnB search, it can be ignored safely.
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1. Check all candidate correspondences (xi, x′i), with center rotations R̄, R̄′.
2. Count how many feasibility inequalities ∠(RTxi, Xi) ≤ ε and ∠(R′Tx′i, Xi −

C′) ≤ ε can be satisfied with some Xi.
3. Report the above count as a lower-bound for this cube.

Step 2 of the procedure is done by solving a series of feasibility test problems. How to
perform such tests will be explained in Section 3.4.3.

3.4.2 Upper-bound Computation via Relaxation

In solving maximization (as opposed to minimization) with BnB, it is in general more
difficult to find a proper upper-bound (than to find a lower-bound).

The following procedure gives our solution to finding suitable upper-bound of
the cardinality function for a given cube Cσ(R̄, R̄′) and tolerance ε.

1. Check all correspondences (xi, x′i) with center rotations R̄, R̄′.
2. Count how many relaxed feasibility inequalities ∠(R̄Txi, Xi) ≤ ε +

√
2σ and

∠(R̄′Tx′i, Xi − C′) ≤ ε +
√

3σ can be satisfied with some Xi.
3. Report the above count as an upper-bound for this cube.

Note that, in Step 2 we solve a relaxed feasibility test problem, as the thresholds
in the right side of the inequalities have been enlarged (relaxed), leading to more
correspondences to be claimed as inliers, hence increasing the inlier cardinality.

To show that the upper-bound is valid (i.e. no solution in the cube yields larger
inlier-set cardinality), a lemma and its proof are given below.

Lemma 3.1. For a 5D cubic domain Cσ(R̄, R̄′), solving the above relaxed feasibility problem
gives a valid upper-bound of the inlier-set cardinality.

Proof. Our proof follows from two lemmas of [Hartley and Kahl, 2007], which show
that, for any vector x ∈ R3, given two arbitrary rotations R, R̄ (with v and v̄ as their
angle-axis representations), one must have ∠(Rx, R̄x) ≤ ∠(R, R̄) ≤ ‖v− v̄‖.

Let’s first fix R′, and consider a 2D square domain of R centered at R̄ with half
side-length σ. Suppose R∗ is the optimal rotation, among all rotations within this
domain, such that the corresponding inlier-set I is maximized. Therefore R∗ must be
feasible for inlier points, i.e. ∀i ∈ I one has ](R∗Txi, R′Tx′i) ≤ ε ⇒ ∠(R∗Txi, Xi) ≤ ε

with some Xi. Then for the center rotation R̄ we have

∠(R̄Txi, Xi) ≤ ∠(R∗Txi, Xi) +∠(R̄Txi, R∗Txi)

≤ ε +∠(R̄, R∗)

≤ ε + ‖v̄− v∗‖
≤ ε +

√
2σ.

(3.7)
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This result implies that, if we relax the right side of the feasibility inequality from
ε to ε +

√
2σ and evaluate inlier cardinality with respect to the center rotation, then

the obtained cardinality will be no less than the optimal cardinality obtained within
this cube, i.e. the one corresponding to R∗.

For the other rotation R′ (which is a 3-dof rotation) and vector v′, a similar result
can be obtained, except that in this case one has

√
3σ for a 3D cubic domain instead

of
√

2σ. Combining both rotations we have: for each point i in the optimal inlier-
set with rotations in Cσ(R̄, R̄′), both ∠(R̄Txi, Xi) ≤ ε +

√
2σ and ∠(R̄′Tx′i, Xi − C′) ≤

ε +
√

3σ must be satisfied with some Xi. This completes the proof and the upper-
bound is valid.

3.4.3 Efficient Bounding with Closed-form Feasibility Test

Solving upper-bound and lower-bound necessitates the feasibility test task. This task
is: given a pair of camera rotations R, R′ (along with C ≡ 0, C′ ≡ [0, 0, 1]T), test
whether or not a correspondences pair (x, x′) is an inlier with respect to the given
angular reprojection error threshold ε. It can be formally formulated as

Problem 3.3 (Feasibility test for determining inliers). The inliers can be determined by
the flowing feasibility test:

Given x, x′, R, R′, C, C′, ε, ε′

does there exist X
such that ∠(RTx, X− C) ≤ ε

and ∠(R′Tx′, X− C′) ≤ ε′

where ε = ε′ = ε for the feasibility test in lower-bound computation, and ε = ε +
√

2σ, ε′ =
ε +
√

3σ for the relaxed one in upper-bound computation.

One way to do such a test is by two-view triangulation [Hartley and Sturm, 1997].
It has been shown in [Ke and Kanade, 2007; Kahl and Hartley, 2008] that this prob-
lem can be solved by Second Order Cone Programming (SOCP). We have tested
this method experimentally using a commercial SOCP solver (MOSEK). It worked
successfully on very small numbers of feature points but with high computational
demand, preventing us from doing larger experiments. We were therefore motivated
to seek a faster solution.

Built upon previous work [Enqvist et al., 2011], our bounds are derived with
efficient feasibility test in closed-form. The intuition is: to verify whether or not
(x, x′) is compatible with a tentatively given essential matrix, one does not have to
recover the corresponding 3D point X. Instead, it is sufficient to check whether or
not the epipolar relationship of the two points is satisfied. See Figure 3.2 for an
illustration. A similar idea was proposed in [Hartley and Kahl, 2007], where a Linear
Programming solver is used for feasibility tests.

Our method avoids using convex programming. It is a direct application of the
following theorem which is a simple extension of that in [Enqvist et al., 2011]. Recall
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ε
RTx

C C′
ε′

R′Tx′

Figure 3.2: Illustration of the feasibility test. Given camera relative motion parame-
ters, a correspondence pair is an inlier if and only if the two cones shown in the figure
intersect. These two cones have the camera centers as their vertices, and angular error
thresholds as their half apex angles.

that, the first camera is centered the origin and the second one is on Z-axis. If we
represent the unit vectors RTx and R′Tx′ in spherical coordinates, they become

RTx =

sin θ cos ϕ

sin θ sin ϕ

cos θ

, R′Tx′ =

sin θ′ cos ϕ′

sin θ′ sin ϕ′

cos θ′

. (3.8)

Theorem 3.1. Given a pair of correspondences x, x′, rotation matrices R, R′ and camera
centers C ≡ 0, C′ ≡ [0, 0, 1]T, representing RTx and R′Tx′ in spherical coordinates as (θ, ϕ)
and (θ′, ϕ′), we have: Problem 3.3 is feasible if and only if{

θ ≤ θ′+ε+ε′

|ϕ− ϕ′| ≤ ω
, (3.9)

where ω is given below

ω =


arcsin( sin ε

sin θ ) + arcsin( sin ε′
sin θ′ ), i f θ < θ′

arccos( cos(ε+ε′)−cos θ cos θ′

sin θ sin θ′ ), i f θ ∈ [θ′, θ′+ε+ε′]
π, if any of the above is undefined

. (3.10)

Proof of this theorem can be found in [Enqvist et al., 2011]. The geometric in-
tuition behind Theorem 3.1 is easy to discern. Consider the limit case when ε → 0
and ε′ → 0 (thus ω → 0), then |ϕ − ϕ′| ≤ ω ⇒ ϕ = ϕ′ says that the two view-
ing rays of the two points lie in the same half-plane containing the baseline, and
θ < θ′ + ε + ε′ ⇒ θ < θ′ entails that the two viewing rays intersect in this half-plane.

Based on this theorem, both lower-bound and upper-bound for a cube can be
made in closed-form. The evaluation is efficient with elementary computation (and
counting), using basic trigonometric functions.
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Algorithm 3.1: BnB search in D2
π ×B3

π for optimal essential matrix maximizing
the inlier set

Input: Images point pairs (xi, x′i), i = 1, . . . , M; angular error threshold ε.
Output: Optimal essential matrix E∗ and corresponding inlier set I∗ of size N∗.

1 Divide [−π, π]5 into small sub-cubes and push them into priority queue Q.
2 Set N∗= 4. %we need to find at least N∗= 5 points
3 loop
4 Read out a cube with the highest upper-bound UB from Q.
5 Quit the loop if UB = N∗.
6 Divide it into 25 = 32 sub-cubes with equal side length.
7 foreach sub-cube Cσ(R̄, R̄′) do
8 Set its lower-bound LB and upper-bound UB to be 0.
9 foreach correspondence pair (xi, x′i) do

10 LB++, if Problem 3.3 is feasible with R̄, R̄′, ε, ε.
11 UB++, if Problem 3.3 is feasible with R̄, R̄′, ε+

√
2σ, ε+

√
3σ.

12 end
13 if LB > N∗ then
14 Update N∗= LB , E∗= E(R̄, R̄′) and also I∗.
15 end
16 Discard this cube if UB 6 N∗; otherwise put it into Q.
17 end
18 end

Degeneracy. Note that when a feature point (θ, ϕ) either falls on Z-axis or is suffi-
ciently close to it (θ < ε or θ < ε′), the above functions for ω are not defined. In such
cases, the feasibility test always returns true.

3.4.4 The Main Algorithm

Armed with the above developments of domain parametrization, lower and upper
bounds, and closed-form feasibility test, we are now ready to present our main al-
gorithm. Although it appears to be a bit technically heavy, the central idea and
the implementation are rather simple: for each parameter domain, i.e. a 5D cube,
count the number of feature correspondences that pass the feasibility test (or, relaxed
feasibility test) as the lower-bound (or, upper-bound) of the cardinality, and try to
update the solution and discard this cube accordingly. Algorithm 3.1 summarizes
the algorithm in pseudo-code form.

Initial Cubes. Before the BnB loop we divide the initial cube [−π, π]5 into smaller
cubes as it is less likely that a large cube can be discarded. In our implementation
we use 65=7776 initial cubes with equal side length.
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Figure 3.3: Typical configurations of the synthesized cameras and 3D points for the
wide-FOV (left) and narrow-FOV (right) cases.

Search Strategy. The BnB algorithm uses the best-first-search strategy. Concretely,
it maintains a priority queue of the active cubes, whose priorities are set to be their
upper-bounds. In this way, the BnB algorithm always explores the most promising
cube first.

Proof of Convergence. The convergence of the algorithm is easy to see, as when
the side-lengths of all cubes asymptotically diminish to zero, the gap between the
upper-bound and lower-bound will be zero too.

3.5 Experiments

In this section, we report the experimental results on synthetic scenes and real im-
ageries. Our method is implemented in C++, and tested on a standard PC with Intel
i7 3.4GHz 4-core CPU and 8GB memory.

3.5.1 Synthetic Scene Test: Normal Cases

The main goal of experiments on synthetic data is to verify the correctness of the
proposed method, including the essential manifold parameterization and the BnB
algorithm. In these experiments, we set the angular error threshold to be 0.002 ra-
dians (about 0.115 degrees). Inlier number is the main index for essential matrix
evaluation as our goal is to optimally maximize it. Nevertheless, we will also report
the estimation error of essential matrix. For better comprehension, we use classic
parametrization E = [ t̂ ]×R̂, and evaluate error of R̂ and t̂. Rotation error is the an-
gle between R̂ and ground truth rotation. As t̂ is obtained up to a scale, we define
translation error as the angle between t̂ and ground truth translation. Note that, as
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Figure 3.4: Average rotation and translation errors (both in degrees) for 50 runs of
our method in synthetic wide-FOV (top) and narrow-FOV (bottom) tests with respect
to different outlier ratios and total points.

discussed in Section 3.3, these results can be further improved by minimizing the
reprojection error of obtained inliers (which is not used here).

Wide Field-Of-View (Omnidirectional Camera). In this test synthetic data with
random points and two omnidirectional cameras which have 360◦ field of view were
used. We synthesized 50 configurations of different points and camera poses. The
points were generated in a cube centered at the origin with side length 4, and camera
centers were generated from a Gaussian distribution centered at the origin with σ =
0.5. Gaussian noise with σ = 0.001 was added to all the projected image points. To
generate outliers, we randomly perturbed the image points in the first camera by
over 10 degrees. We tested our method first on different numbers of outliers with
fixed total points (50), and then on different numbers of points with fixed outlier
ratio (10%). As expected, our method succeeded in all the tests in terms of finding out all
the true inliers. Average rotation and translation errors of the 50 configurations are
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Figure 3.5: Average running time (in seconds) for 50 runs of our method in synthetic
wide-FOV (top) and narrow-FOV (bottom) tests with respect to different outlier ratios
and total points.

shown in Figure 3.4. Clearly, the error increases with outlier ratio and decreases with
total point number. Average running time is shown in Figure 3.5. In general, it took
the method longer time to converge when higher levels of outliers were present. To
visualize the behavior of BnB, we present typical evolution curves of active cubes
and global bounds as a function of time in Figure 3.6.

Narrow Field-Of-View. We then tested our method under narrow field of views.
We synthesized the situation where the points are confined in approximately 60◦

FOV of two regular pinhole cameras. The points were generated in a cube centered
at the origin with side length 4, and cameras were randomly placed at a distance of
about 4 facing the origin. Other settings were the same with that in wide-FOV tests.
Again, our method successfully found out all the true inliers. The estimation error,
running time, and typical BnB evolution are also shown in Figure 3.4, Figure 3.5
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Figure 3.6: Typical cube and bound evolutions of BnB in synthetic wide-FOV (top)
and narrow-FOV (bottom) tests using 50 points with 20% (i.e. 10) outliers.

and Figure 3.6 respectively. It is clear that solving the problem with narrow-FOV is
generally more difficult than that with wide-FOV, as evidenced by the larger rotation
and translation errors as well as the longer running time of our method.

3.5.2 Synthetic Scene Test: Special Cases

We tested some special cases on wide FOV configuration, aiming to test the perfor-
mance of the proposed method under special or extreme situations.

Large Outlier Ratio. To test the performance under large outlier ratio, we generated
50 points with 25 (50%), 30 (60%), 35 (70%) outliers respectively in the wide FOV
configuration. Our method successfully found the true inliers in 11s, 26s and 81s
respectively.

Pure Translational Motion. In this experiment, two cameras with pure (and ran-
dom) translation as the ground-truth transformation and 50 points were synthesized.
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We ran our method on these points, and the angle between the two estimated rota-
tions R and R′ is about 0.11 degrees, which indicates that our method successfully
identified the equal rotation case.

All Scene Points on a Plane. We synthesized a planar case where all 50 points lie
on a plane. This is a well-known degenerate case for fundamental matrix estima-
tion, however it should not affect essential matrix estimation, as explained in [Nistér,
2004]. Our experiment in this case obtained a positive result and we successfully
recovered the correct essential matrices with and without outliers. The rotation and
translation errors are all below 0.15 degrees.

3.5.3 Real Image Test

Images from both narrow-FOV and wide-FOV cameras were then used to evaluate
the real-life performance of our method. We also tested RANSAC and LO-RANSAC
[Chum et al., 2003] (with Option 4 of local optimization described in [Chum et al.,
2003]) methods. In both RANSAC implementations, the 8-point method3 was used
and angular error threshold is adopted to distinguish outliers; the outlier ratio and
probability parameter η were set to be 30% and 0.99 respectively. Note that, the
goal of this work is not to replace the popular RANSAC and its variants in essential
matrix estimation, but to provide a complementary (yet important) optimal method.

Narrow Field-Of-View. We tested our method on two image pairs from the Corri-
dor and Valbonne data sets4. 94 and 106 SIFT matches were generated respectively
for the two pairs as shown in Figure 3.7. The angular error threshold was set to
0.0015 radians. We parallelized the BnB search with 8 threads, and our method con-
verged in 221s and 453s respectively. Apparently, it takes quite more time than on
synthetic data of the same size. However, this is reasonable as will be analyzed as
follows. On a 600×600 image from a 60◦-FOV camera, a small pixel difference, say
3 pixels, yields about 0.3-degree angle difference. To tell outliers from inliers at this
accuracy of both camera orientations, the 5D cube would have to be divided into
( 180

0.3/
√

2
)2×( 180

0.3/
√

3
)3 ≈ 8×1014 blocks for a complete search method, and this is also

a very difficult task for our BnB. The number of detected inliers is 66 for Corridor
image and 89 for Church image, indicating 29.8% and 16% outlier ratios respectively.
The detected inliers and outliers are shown in Figure 3.7. For some outliers, we show
their angular errors (optimally solved via bi-section and SOCP [Kahl and Hartley,
2008]) with the obtained essential matrix.

We then repeated both RANSAC and LO-RANSAC 1,000 times with the same an-
gular error threshold; the resulting inlier numbers are shown in the first two columns
of Table 3.1. The heuristic and stochastic nature of random sampling scheme can be

3The 5-point method (with Hartley and Li [2012]’s solver) was also tested. It performed comparably
with or slightly worse than the 8-point method; the latter one is thus presented.

4http://www.robots.ox.ac.uk/~vgg/data/data-mview.html

http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
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Figure 3.7: Results on narrow-FOV images. Green and red dots are respectively
inlier and outlier correspondences found by our method. For outliers we labeled
their angular reprojection errors in radius. (Best viewed on screen and with zoom-
in)

clearly seen, as the mean performances of the 1,000 runs are not satisfactory. More-
over, both the two methods failed to detect the same inlier number as ours. This
can be explained by the fact that algebraic solution of essential matrix is not consis-
tent with the meaningful geometric error metric. In future, we plan to compare our
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Table 3.1: Inlier-set maximization performance of different methods. The first column
lists the images and correspondence numbers. The second and third columns show
the maximal and mean inlier number detected by RANSAC and LO-RANSAC in
their 1,000 runs. The last column shows the inlier number from our method and the
running time (with 8 threads).

Images (#points)
RANSAC LO-RANSAC Our method

max/mean #inliers max/mean #inliers #inliers (time)
Corridor (94) 63 / 32.5 65 / 50.0 66 (221s)
Church (106) 82 / 32.8 87 / 35.5 89 (453s)
Building (202) 160 / 146.9 161 / 151.7 163 (52s)
Office (151) 124 / 91.4 126 / 104.2 126 (43s)

method with RANSAC methods in high-noise situations where algebraic solutions
can be severely biased.

Wide Field-Of-View (Fisheye Camera). In order to test our method in real-life
wide-FOV case, a camera with a fisheye lens was used to capture images of the scene
with up to 190◦ FOV. The camera was calibrated with the method of Scaramuzza
et al. [2006].

Figure 3.8 shows two typical pairs referred as Building and Office. The angular
threshold was set to be 0.003 radians for these images. Our method converged in 52s
and 43s for the two image pairs respectively as shown in Table 3.1, and the results
indicate 19.3% and 16.6% outlier ratios. In general, the angular errors of outliers
are larger than that in the narrow-FOV case (see Figure 3.8), and our method ran
faster on wide-FOV images. This result is consistent with our synthetic experiments
and similar discoveries reported in previous works [Daniilidisl and Spetsakisz, 1997;
Hartley and Kahl, 2007; Enqvist and Kahl, 2009; Heller et al., 2012].

3.6 Conclusion

A branch-and-bound global optimization method is proposed for essential matrix
estimation via inlier-set cardinality maximization under geometric (angular) error.
An explicit and geometrically meaningful parametrization of the 5D essential man-
ifold, i.e. D2

π × B3
π, is used to perform the BnB search. Based on previous works

[Hartley and Kahl, 2007] and [Enqvist et al., 2011], closed-form bounding functions
of inlier-set cardinality are derived, leading to efficient bound evaluation in the 5D
space BnB.

Currently, the proposed method is slow especially for cameras with a small field
of view. Nevertheless, due to its optimality, the method can be used as a benchmark
for method evaluation, or be applied in situations where robustness or accuracy is
highly desired while speed is not crucial.

To make the method faster and more practical, there are some strategies we would
like to investigate in future. For example, a possible one is to get an initial essential
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Figure 3.8: Results on wide-FOV images taken with a fisheye camera. Green and red
dots are respectively inlier and outlier correspondences found by our method. For
outliers we labeled their angular reprojection errors in radius. (Best viewed on screen
and with zoom-in)

matrix estimate using RANSAC, then search the parameter space with the proposed
BnB in a small region around this estimate. Taking advantage of prior knowledge
on motion to confine the parameter space is a metric of continues optimization in
contrast to discrete combinatorial optimization. Since our BnB algorithm can be
easily parallelized, another idea would be porting it onto modern GPU where a
significant speedup can be expected.



Chapter 4

2D Camera and 3D Camera Relative
Pose Estimation from Scene
Constraints

The popularization of consumer depth cameras has greatly boosted the development
of 3D-based entertainment, augmented/mixed reality, 3D reconstruction etc. Depth
cameras can provide the three-dimensional perception of the scene, while conventual
2D color cameras can provide the color of the visual world. 3D geometry and color
are complementary information, and can be fused for advanced perception. As the
depth camera and color camera are at different locations in the 3D space, the depth
and color images they captured cannot be fused directly. To achieve color and depth
data fusion, the relative pose between the two cameras is required to register the
two images. Some consumer depth cameras come with a rigidly attached color cam-
era, with their relative pose being fixed as a manufacturer setting (e.g., a Microsoft
Kinect device). Despite this, in practice one may need a different color camera (e.g.,
a high-definition CCD camera as shown in Figure 4.6), or different relative poses be-
tween depth and color cameras for different scenarios (e.g., for hand-held cameras).
Therefore, relative pose estimation is an important task.

Relative pose estimation of a color camera and a depth camera is not an easy
task. It can not be achieved by conventional relative pose estimation techniques
for color cameras described in Chapter 3, i.e., computing the motion using feature
correspondences. This is because a color image and a depth image bear different
types of information of the scene, and no suitable cross-modality feature extraction
and matching technique exist at present. In fact, feature matching is a difficult task
even by manual feature point selection: a salient image point on one image may not
be salient enough for manual selection on the other image.

Up until now, color and depth camera relative pose estimation has been mostly
achieved as a camera extrinsic calibration task, in a way that is very similar to the
conventional procedure of calibrating a regular color camera. Typically, this involves
the user waving a plate with a checkerboard pattern in front of the camera(s). How-
ever, these methods require multiple color and depth image pairs of the checkerboard
plane for off-line calibration, after which the relative pose should remain fixed when

65
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in actual use, as otherwise the calibration should be again. Moreover, the calibration
procedure is cumbersome which necessitates a lot of human intervention to label the
feature correspondences (on color images) or plane regions (on depth images) across
multiple images.

In this chapter, we propose a new method to estimate the color and depth camera
relative pose with single shot (i.e., with one pair of color and depth images). The color
camera and depth camera can be placed at different locations according to the actual
needs, as long as they share a common field of view. The estimation can be on-site,
or even can be applied for post-processing. We make the assumption that each cam-
era has already been intrinsically calibrated, thus we deal with extrinsic calibration
only. This assumption is not too restrictive as the intrinsic parameters can be read-
ily obtained using a separate intrinsic calibration procedure or from manufacturers’
specifications. Additionally, in many practical applications, the intrinsic parameters
of the cameras are often fixed while the extrinsic parameters can be subject to change.

Another feature of the proposed method is that it works in a correspondence-free
style, and does not need a special calibration pattern (e.g., a checkerboard plane).
Instead, it makes use of a small set of known scene constraints, such as known
distances/angles and distances/angle equivalences. Based on these geometric con-
straints from the scene, we formulate the relative pose estimation problem as a 2D-3D
image registration problem. We leverage the metric information of the scene to min-
imize the geometric error from the registration results. In this way, we not only free
ourselves from building image correspondences, but also directly optimize the image
registration quality. Additionally, we propose a singe-view 3D reconstruction algo-
rithm using these geometric constraints from the scene. The algorithm is applied to
obtain an initial solution to the 2D-3D registration problem.

4.1 Related Work

Relative pose estimation of a generically configured color and depth camera pair
has attracted considerable attention from computer vision [Zhang and Zhang, 2011],
mixed and augmented reality [Pilet et al., 2006]Gomez et al. [2005] and robotics com-
munities [Zhang and Pless, 2004]. In this section we briefly review the most relevant
prior work to our method.

As previously mentioned, color and depth camera relative pose estimation has
been mostly done as an office camera extrinsic calibration process. For example, the
camera calibration works by Herrera C et al. [2012] and Zhang and Zhang [2011] are
closely related to ours. Herrera C et al. [2012] presented a method to calibrate the
intrinsic and extrinsic parameters of two color cameras and a depth camera by using
a planar pattern surface. The calibration procedure is similar to the conventional
plane-based color camera calibration [Zhang, 2000], i.e., a checkerboard is waved
before the cameras and imaged from various poses. The user needs to give the
correspondences across the color images and mark the plane region on the depth
images. The calibration method of Zhang and Zhang [2011] is similar, although
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they additionally make use of the correspondences between the color image and the
depth image to improve accuracy. Smisek et al. [2011] calibrated Kinect cameras
using correspondences between the RGB image and the infrared image.

Among other related works, Zhang and Pless [2004] proposed a practical proce-
dure to extrinsically calibrate an RGB camera with a 2D Laser-Rangefinder (LRF),
where a checkerboard pattern was moved freely in front of both sensors. Extrinsic
calibration was achieved by solving a set of linear constraints which were subse-
quently refined by iterative minimization of the reprojection error. Likewise, Vascon-
celos et al. [2012] also studied the calibration of a color camera with a 2D LRF and
they showed that a set of three pairs of planes and lines provides a minimal configu-
ration to solve the calibration problem linearly. Scaramuzza et al. [2007] proposed a
method to estimate the relative pose between a color camera and a 3D LRF. However,
this method requires manually selecting correspondences between the color image
and the depth image. To this end, they convert a range image to a so-called bearing
angle image on which natural features of a scene are highlighted to facilitate manual
feature selection. Alismail et al. [2012] used a calibration target consisting of a single
circle to estimate the extrinsic parameters of a camera-Lidar system. The method
detects the circles (projected as ellipses) and their physical centers on multiple color
images, reconstruct them to 3D, and register them onto the point clouds from Lidar
to obtain the relative pose.

The relative pose estimation problem we consider in this chapter also has a close
relationship with hand-eye calibration, which has been intensively studied in com-
puter vision and robotics [Tsai and Lenz, 1989; Horaud and Dornaika, 1995; Dai
et al., 2009]. These methods works by solving the well-known conjugate equation
AX = XB to estimate the relative pose (i.e., X), which necessitates moving the cam-
era system and estimating the ego motions of the cameras (i.e., A and B). In contrast,
no ego-motion estimation is required by our method. In addition, these methods
have commonly used an algebraic error to solve the problem, while we minimize
geometrically-meaningful errors.

Our method works in a single-shot fashion, i.e., it only requires one color image
and one depth image to estimation the relative pose. To our knowledge, little work
that uses a single shot has been published, except for the work by Geiger et al.
[2012b]. However, although Geiger et al. [2012b] used one image pair to calibrate
the cameras, they actually set up multiple checkerboard patterns in a large scene.
This is essentially similar to a multi-shot configuration. Their calibration process
further involved an explicit segmentation of the planar regions corresponding to
the checkerboard. In contrast, our single-shot method does not use checkerboard
patterns, nor does it require any plane detection and segmentation process. Instead,
it exploits the geometric constraints in the scene to solve the problem. Our method
is more flexible in that it can estimate the relative pose in a relatively small scene.
Furthermore, we minimize the geometric error of scene constraints given by image
registration, thus directly optimizing the image registration quality.
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4.2 Color and Depth Camera Relative Pose Estimation from
Scene Constraints

4.2.1 Problem Statement

The ultimate goal of color and depth camera relative pose estimation is to bring
the obtained 2D color image and 3D depth image into perfect geometric alignment
(registration). This process can be intuitively understood as either,

• to color each pixel in the depth image with the correct color, or, conversely,

• to assign each pixel in the color image a correct depth value.

Given a perfect registration, these two statements are equivalent. Mathematically,
the underlying task estimates the relative geometric transformation between the two
cameras. The transformation involves a rotation matrix, R, and a translation vector
t, forming a 6-dof (degrees-of-freedom) rigid transformation Θ = {R, t}.

When the two cameras are observing the same scene, for each scene point we can
simply obtain its 3D coordinates from the depth image. If we are able to identify the
corresponding pairs of 2D image points and depth points, then we can obtain the
mapping relationship between the 3D scene and its 2D image coordinates, which is
defined in terms of the (unknown) relative pose parameters Θ. But this approach,
while conceptually simple and straightforward, is not an easy task in practice. The
main difficulty comes from the necessary requirement of knowing cross-modality
feature correspondences between the RGB image and the depth image. Moreover,
most existing methods require multiple shots of a calibration pattern to obtain the
relative pose.

4.2.2 The Proposed Approach

In this work, we solve the color and depth camera relative pose estimation problem
in a “single shot” and “correspondence free” style. Our method aims to optimize
the final “warping” quality directly by minimizing the geometric registration error
between a color camera and a depth camera. We evaluate the warping quality from
scene knowledge. Under perfect relative pose estimates, scene knowledge observed
from the color image should have identical measurements in the corresponding 3D
point clouds from the depth image. Thus we can potentially achieve single-shot
estimation by minimizing the discrepancy between this prior scene knowledge and
its estimation. In addition, we can build a 3D estimation for the RGB image under
assumptions about the smoothness and continuity of the scene. We call this process
“inverse projection”, which estimates 3D positions from 2D image coordinates.

Our method works by capturing a single shot of a scene, provided that certain
constraints about the scene are easy to access. The relative pose estimation task
is achieved by solving a 2D-3D registration problem. Of course, in the absence of
scene constraints, doing such a 2D-3D registration is generally impossible due to the
information loss in the projection from the 3D to 2D. Nevertheless, our knowledge
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(a)

1

(b)

1

(c)

Figure 4.1: Illustration of the evaluation of scene knowledge. (a) An image of a scene
containing three planes. Partial knowledge (ground truth) of the scene is labeled,
which includes a known distance, distance equivalency and a known angle. Initial
alignment of the color and depth images demonstrates a large discrepancy in eval-
uating the scene knowledge, as shown in (b). The goal of our method is to find the
optimal rigid transformation Θ∗ between the color and depth camera with which the
alignment yields minimal errors, as shown in (c).

(including qualitative assessments) of the scene can help to provide feedback on the
quality of the registration. For example, we invite the reader to look at the schematic
example in Figure 4.1(b) where it is not difficult to suspect (or to guess) that this
situation is very likely to be not registered well while Figure 4.1(c) gives a much better
registration. In this example, scene constraints including known distances, distance
equivalency, and known angles are involved (as discussed in the next subsection).

In the following sub-sections, we first introduce our inverse projection method
to estimate a 3D position for a 2D image point. We then illustrate how to incor-
porate different scene constraints in evaluating the registration performance. Finally,
we present our geometric-registration-error-minimization based method that directly
optimizes the warping quality between the two images.

4.2.3 Inverse Projection Estimation

Given a rigid body transformation between the RGB and depth cameras, Θ = (R, t),
we can transform the point clouds XD = {(xd

i , yd
i , zd

i )} from the depth camera to
the coordinates of the color camera, and project it onto the image plane using the
intrinsic matrix Kc. This procedure can be expressed as

λcd
i [ucd

i , vcd
i , 1]T = Kc[R, t][xd

i , yd
i , zd

i , 1]T, (4.1)

where [ucd
i , vcd

i ] gives the color image point corresponding to the 3D point [xd
i , yd

i , zd
i ]

and λcd
i is the unknown projective depth. This mapping relationship can be com-

pactly expressed as:
(ucd

i , vcd
i ) = g(Θ) ◦ (xd

i , yd
i , zd

i ), (4.2)
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Figure 4.2: Inverse projection estimation: estimating 3D position for an image point
on the color image with available 3D point clouds from depth camera. Black crosses
and dots: the projected points from the depth image and their corresponding 3D
points. Red plus and circle: an image point and its (estimated) corresponding 3D
point.

where g denotes the transformation from a 3D point in the depth camera to the color
image coordinate.

Now that we have obtained 3D positions for some image pixels on the color
image, the question is: can we obtain 3D positions for all the pixels in the color image? This
is generally impossible as the projection from 3D continuous world to 2D discrete
grid is an information-loss procedure. Nonetheless, we can make a local (piecewise)
smoothness assumption, under which the inverse projection g−1(Θ) may be well
defined, and we can recover (xd

j , yd
j , zd

j ) through g−1(Θ) ◦ (uc
j , vc

j ) based on the local
structure around particular (uc

j , vc
j ).

We use triangulation to estimate this inverse projection g−1(Θ), assuming a lo-
cally smooth surface. Specifically, we obtain surface triangles for the dense 3D point
clouds {(xd

i , yd
i , zd

i )} from the depth camera. Given a current estimation of Θ, the tri-
angles ∆k are first rigidly transformed and then projected onto the image plane of the
RGB camera. Note that the projected triangles do not necessarily correspond to the
2D Delaunay triangulation of the projected 3D points because, due to self-occlusion
of the scene, there are possibly triangles overlaid on top of each other. For an im-
age point (uc

i , vc
i ), we first find the projected triangles containing this point, then

back-project the image point onto the 3D space. We then obtain the estimated 3D
positions from triangles containing the image point. If there are multiple 3D points
corresponding to the image point, we choose the one with the smallest depth, thus
effectively handling the occlusion. The procedure of inverse projection is illustrated
in Figure 4.2.

Finally, the inverse projection can be written as

(xd
i , yd

i , zd
i ) = g−1(Θ) ◦ (uc

i , vc
i ), (4.3)
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where (uc
i , vc

i ) is any point on the image plane of the RGB camera.

4.2.4 Scene Constraints

Once we have the inverse projection g−1(Θ), we can evaluate metric information, and
compare it with prior knowledge about the scene. This prior knowledge can include
(but is not limited to) three broad types of constraints which we discuss here.

Known-distance Constraints: Suppose we have two feature points from the color
image denoted as (uc

i , vc
i ) and (uc

j , vc
j ), and we know their Euclidean distance, lij.

By applying the inverse projection, we obtain their would-be distance, which is
‖g−1(Θ) ◦ (uc

i , vc
i )− g−1(Θ) ◦ (uc

j , vc
j )‖. Then, the discrepancy from the known dis-

tance, given by

ek(Θ) = |‖g−1(Θ) ◦ (uc
i , vc

i )− g−1(Θ) ◦ (uc
j , vc

j )‖ − lij|, (4.4)

measures how good the tentative registration is. This known-distance constraint fixes
the distance between points on two lines. Given enough known distance constraints,
we are able to recover the 3D coordinates of the points. In general there needs to be at
least one known distance constraint to fix the global scale of the 2D-3D registration.

Distance-equivalency Constraints: If, for instance, we know that the distance be-
tween one pair of feature points, (uc

i , vc
i ) and (uc

j , vc
j ) should be the same as the

distance between another pair of points, (uc
k, vc

k) and (uc
l , vc

l ), then the observed dis-
crepancy is expressed as ed(Θ) = |‖g−1(Θ) ◦ (uc

i , vc
i )− g−1(Θ) ◦ (uc

j , vc
j )‖− ‖g−1(Θ) ◦

(uc
k, vc

k) − g−1(Θ) ◦ (uc
l , vc

l )‖|. This is another useful constraint but it cannot be ap-
plied alone as solely using distance-equivalency constraints could result in the trivial
solution of all distances being zero.

Angular Constraints: Besides the scene constraints from distance measurements,
we can also evaluate angular constraints about the scene such as the preservation of
orthogonal and parallel lines in the images. Discrepancy from an orthogonal con-
straint can be expressed as eo(Θ) = (g−1(Θ) ◦ (uc

i , vc
i )− g−1(Θ) ◦ (uc

j , vc
j ))

T(g−1(Θ) ◦
(uc

k, vc
k)− g−1(Θ) ◦ (uc

l , vc
l )) while discrepancy from a parallel constraint can be ex-

pressed as ep(Θ) = [g−1(Θ) ◦ (uc
i , vc

i )− g−1(Θ) ◦ (uc
j , vc

j )]×(g−1(Θ) ◦ (uc
k, vc

k)− g−1(Θ) ◦

(uc
l , vc

l )), where for a = [a1 a2 a3]T, [a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

. Other angle-based

constraints such as the preservation of known angles, and of pairs of angles being the
same (angle equivalency) can also be evaluated in a similar way. Note that angular
constraints include a degenerate result, i.e., all the 3D points are at the camera center,
which results in a trivial solution in 2D-3D registration.
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As discussed in the next subsection, minimizing the total error with respect to
the rigid body transformation, Θ, for all known image constraints enables us to solve
the problem with a single shot of an RGB and depth system.

4.2.5 Geometric Error Minimization

Given an RGB color image, assume that certain metric information about the scene is
available (e.g., inter-point distances between some pairs of image features, parallel
or orthogonal constraints between lines, distance equivalency and so on – a set of
rather mild and general conditions on the images), then for any tentative 2D-3D
registration (parameterized by Θ), we can always quantitatively measure registration
quality using the discrepancy between the estimation and the a priori knowledge.
Minimizing this discrepancy directly leads to the optimal relative pose, as well as a
direct optimization of the warping quality. This is the main idea behind our proposed
method.

Mathematically, our method formulates the color and depth camera relative pose
estimation problem of as searching for an optimal rigid transformation Θ∗ = {R∗, t∗}
that minimizes geometric error:

Θ∗ = argmin
Θ∈SE(3)

∑
i

ei(Θ)2, (4.5)

where ei(Θ) is the discrepancy between a measurement and its corresponding prior
knowledge under the transformation Θ.

Due to the fact that there is no explicit form of the inverse-projection function, we
are not able to employ analytic gradient-based methods for solving the minimiza-
tion problem. Instead, the implicit inverse-projection function means that evaluating
the scene knowledge with respect to the rigid transformation results in a complex,
nonlinear, optimization problem and numerical gradient-based methods such as the
Levenberg-Marquardt algorithm [Moré, 1978] can be used. The desired rigid trans-
formations reside on the Riemannian manifold SE(3), which is homeomorphic to
SO(3)×R3 [Tron et al., 2008]. The constraints on SO(3) can be involved in param-
eterizing the rotation, and we use the angle-axis representation in our algorithm
implementation.

Alternatively, other gradient-free algorithms such as the Nelder-Mead simplex
downhill algorithm [Nelder and Mead, 1965] can be used. The Nelder-Mead al-
gorithm can also be adapted with a “simplex downhill on manifold” optimization
scheme from [Dreisigmeyer, 2006] to better exploit the geometry of the SE(3) mani-
fold.

To solve the non-linear minimization problem in evaluating scene constraints, we
need a good initial guess such as the one described in the next section.
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Figure 4.3: Single view reconstruction with scene constraints.

4.3 Initial Relative Pose Estimation

In this section, we present a simple solution to estimate the relative pose, which can
be used to initialize the nonlinear optimization. Note that, although simple, this
method is a self-contained solution and is interesting in its own right. The method
takes advantage of the scene constraints to reconstruct the extracted color image
points and then to register the reconstructed 3D points with the dense 3D point
clouds from the depth camera to obtain a solution for the rigid body transforma-
tion. Note that the objective function for 3D registration is different from directly
evaluating scene constraints as in (4.5).

4.3.1 Single View 3D Reconstruction

Generally, a single view 3D reconstruction is impossible without any scene informa-
tion. But, with partial scene constraints such as known distances, distance equiva-
lency, and known angles, we are able to reconstruct the 3D scene from measurements
on a single-view image.

Under the color camera coordinate, the perspective imaging process is expressed
as λi[uc

i vc
i 1]T = K [I 0] [Xc

i Yc
i Zc

i 1]T, where [uc
i vc

i ]
T is the image measurement,

[Xc
i Yc

i Zc
i ]

T is the corresponding 3D position and λi is the unknown projective
depth. This equation actually gives a direction constraint on the 3D position, say,
[Xc

i Yc
i Zc

i ]
T = λiK−1[uc

i vc
i 1]T, i.e., the 3D point lies on the ray with direction

K−1[uc
i vc

i 1]T with an unknown projective depth λi to be determined.
With scene constraints such as known distances, distance equivalency and known

angles, we have further constraints on the projective depths. Thus it is possible
to recover the scene structure. Take the known distance constraint as an example
(Figure 4.3), the distance between two 3D points is measured as:

dij = ‖λiK−1[uc
i vc

i 1]T − λjK−1[uc
j vc

j 1]T‖2, (4.6)
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which gives constraint on the projective depths λi and λj. By defining

aij = (K−1[uc
i vc

i 1]T)T + (K−1[uc
j vc

j 1]T), (4.7)

(4.6) gives the following bilinear equation on λi and λj,

d2
ij = λ2

i aii + λ2
j ajj − 2λiλjaij, (4.8)

which can be equivalently expressed as:

[λi λj]

[
aii −aij
−aij ajj

] [
λi
λj

]
= d2

ij, ∀(i, j) ∈ N , (4.9)

where N defines the set of all measured point pairs.
We define a vector Λ = [λ1, λ2, · · · , λn]T, which contains all the projective depths

to determine. Y = ΛΛT is defined as the Gram matrix and rank(Y) = 1. Define
Aij ∈ Rn×n as being element-wise zero except for Aii

ij = aii, Aij
ij = Aji

ij = −aij, Ajj
ij = ajj.

Then, the bilinear constraint on the projective depth can be expressed as:

tr(AijY) = d2
ij, ∀(i, j) ∈ N . (4.10)

Finally the problem of single view 3D reconstruction from known distance con-
straints is formulated as:

Find Λ,
such that tr(AijY) = d2

ij, ∀(i, j) ∈ N ,
Y = ΛΛT,
rank(Y) = 1.

(4.11)

The quadratic constraint and the rank constraint are both non-convex, thus the
entire optimization problem is non-convex. We take a similar strategy to [Li, 2010] to
“convexify” the constraints, proposing to minimize the trace norm of Y rather than
enforcing the rank-constraint implicitly. Finally we reach a trace norm minimization
problem as:

min trace(Y)
such that tr(AijY) = d2

ij, ∀(i, j) ∈ N .
(4.12)

This is a standard Semi-Definite Programming (SDP) problem and we can use off-
the-shelf solvers such as SDPT3 [Toh et al., 1999] to solve it efficiently. Once we
obtain Y, we can solve Λ by the singular value decomposition (SVD). Finally the 3D
structure is recovered as Xc

i = λiK−1[uc
i vc

i 1]T. As an example, a single view 3D
reconstruction for Figure 4.7(a) is illustrated in Figure 4.8(a).

Minimal Configuration: For each ray, there is an unknown projective depth λi. For
n points in a complete connected graph with known distances, we have n(n− 1)/2
constraints, therefore when n(n− 1)/2 ≥ n, we will have enough constraints to solve
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λi. Thus n = 3 gives the minimal configuration. However, under this configuration,
multiple solutions exist. To retrieve a unique solution, at least 4 points with known
distances should be involved.

Other Scene Constraints: In the previous paragraph, we have taken the known
distance constraint as an example to demonstrate how to recover 3D points from
single-view 2D image measurements. In principle, other constraints can also be in-
corporated into the same framework as follows:

• The distance equivalency constraint is dij = dkl , which gives a linear equation
of Y as tr(AijY) = tr(AklY);

• The orthogonal constraint of lines Lij and Lkl is expressed as (λiK−1[uc
i vc

i 1]T −
λjK−1[uc

j vc
j 1]T)T(λkK−1[uc

k vc
k 1]T − λlK−1[uc

l vc
l 1]T) = 0, which gives a linear

equation of Y as aikYik + ajlYjl − ailYil − ajkYjk = 0;

• The parallel constraint of lines Lij and Lkl is expressed as
[
λkK−1[uc

k vc
k 1]T −

λlK−1[uc
l vc

l 1]T
]
×
[
λiK−1[uc

i vc
i 1]T − λjK−1[uc

j vc
j 1]T

]
= 0, which gives three

linear equations of Y.

All these constraints can be incorporated into the above trace norm minimiza-
tion formulation naturally. Different types of scene knowledge constrain the 3D
reconstruction to different extents. For example, using only the distance equivalency
constraint, we can only achieve reconstruction up to a global scale, where a trivial
solution as all depths being zero is included. Angle-based constraints, such as or-
thogonal or parallel constraints, result in 3D reconstruction up to a global scale and
rotation. For single-view reconstruction from scene constraints, at least one known
distance constraint is required to obtain a global scale.

Related Work: Note that our single view 3D reconstruction has connections with
the Perspective-n-Point (PnP) problem [Lepetit et al., 2009], where the camera motion
is the main focus to solve. Meanwhile, Zhang et al. [1998] used domain knowledge
such as distances and angles to upgrade the affine structure into a Euclidean space by
minimizing the sum of Mahalanobis distances, which is solved as a general nonlin-
ear least-squares problem. Wilczkowiak et al. [2005] exploited geometric constraints
through parallelepipeds for calibration and 3D modeling. Nevertheless, our method
is based on recent progress in compressive sensing theory [Recht et al., 2010] and
provides a more efficient implementation.

4.3.2 Point Cloud Registration

Now that we have sparse point clouds {Xc
i } from a single view 3D reconstruction,

the initial transformation Θ0 can be obtained by registering {Xc
i } to the dense point

clouds {Xd
j } from the depth camera. The well-known Iterative Closest Point (ICP)
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algorithm [Besl and McKay, 1992] can be used to get the solution as1

Θ0 = argmin
Θ=(R,t)∈SE(3)

∑
i

min
j
‖(R−1Xc

i − R−1t)− Xd
j ‖2. (4.13)

The ICP algorithm is simple and efficient. However, it can be easily stuck into local
minima when the displacement of the two camera is reasonably large. Furthermore,
when the scene contains similar local structures, there may be many local minima
with low registration errors. To tackle these issues, we can use the globally optimal
point cloud registration method (Go-ICP) proposed in Chapter 2. Go-ICP uses the
same cost function as in ICP, and leverages a branch-and-bound scheme to guarantee
the optimality (see Chapter 2 for more details). In our experiments, we found it to be
very suitable for the sparse-to-dense 3D point cloud registration task in this chapter.

At this point, we have described the scene-constraint based color and depth cam-
era relative pose estimation approach, as well as an initialization method which is
also based on scene constraints. We will experimentally evaluate the proposed ap-
proach in the next section.

4.4 Experiments

In this section, we present experimental results on generically-configured RGB-D
camera rigs. We first give a synthetic scenario with two cylinders to illustrate the
generality and performance of our method on minimizing geometric error. Then
three sheets of A4 paper in the real world are used to extrinsically calibrate a gener-
ically configured RGB-D camera rig.

Performances of relative pose estimation and alignment were evaluated both
qualitatively (by warping the depth image onto the color image) and quantitatively
(by comparing with ground truth or measuring the geometric error from scene con-
straints). All the experiments were run on a computer with 2.4GHz Intel Core i5
CPU.

4.4.1 Tests on Synthetic Data

In the first experiment, a scene containing two non-parallel cylinders was synthesized
as shown in Figure 4.4(a). We then synthesized a single-shot of an RGB-D camera.
The color image was computed via a simple pinhole model, and the depth map was
generated by the Z-buffer technique. The synthesized RGB-D image pair is shown in
Figure 4.4(b) (with square grids overlaid) and Figure 4.4(c). We took the true side-
length of the grid as constraints about the scene. In this experiment, we directly use

1Note that, in the problem of (4.5), transformation Θ is used to register the depth image onto the
color image; in contrast, the sparse point cloud from the color camera is registered onto the dense point
cloud from the depth camera in (4.13). To unify the parameter symbol, Θ is also used in (4.13), however
its inverse transformation (R−1,−R−1t) .

= (R̄, t̄) is applied on the color point cloud. In practice, one
can directly estimate (R̄, t̄) and then compute Θ trivially.
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(a) A synthesized scene (b) Synthesized color image

(c) Synthesized depth image (d) Initial registration

(e) Final registration (f) GT registration

Figure 4.4: Experiments on a synthetic scene. A scene containing two cylinders
shown in (a) was synthesized. The color image shown in (b) was created by project-
ing the points onto the image plane using a pinhole model. The side-length of the
labeled grids are known and used in our method. The depth image shown in (c) was
computed with the Z-buffer technique. Initial alignment of the color and depth im-
ages are shown in (d). The alignment result with our method and the ground truth
are shown in (e) and (f) respectively. (Best viewed on screen)
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(a) Optimization using LM
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(b) Optimization using NM

Figure 4.5: Convergence curve for the synthetic cylinder scene (RMS error w.r.t. iter-
ation).

Θ0 = (I, 0) as the initial parameter; both the Levenberg-Marquardt (LM) algorithm
and the Nelder-Mead (NM) algorithm were applied to minimize the geometric error.

Quantitative Evaluation. The objective function minimizing the sum of squared
errors was used for optimization, while the root mean square (RMS) errors were
recorded during each iteration as the performance measure for better comprehension.
Convergence curves of the proposed method using the LM and NM algorithm are
shown in Figure 4.5. By our optimization, the RMS error is reduced from the initial
23mm to about 0.06mm. The optimization converged in 7 iterations with about 25
seconds using the LM algorithm, and 84 iterations with about 110 seconds using
the NM algorithm. Table 4.1 presents the estimated relative pose by our method
compared against the ground-truth relative pose. It can be seen that the results are
high consistent with the ground truth. Table 4.2 further shows the relative pose error.
The rotation error is evaluate as arccos

(
(trace(R̃TRgt)− 1)/2

)
, where R̃ and Rgt are

the estimated and ground-truth rotation matrix respectively. Our method recovers
the relative pose accurately, with rotation error below 0.3 degrees and translation
error below 0.01m.

Table 4.1: Estimation results of our method compared with the ground truth on the
synthetic cylinder scene. The rotation is expressed with angle-axis representation.

Angle (◦) Axis Translation (m)
Ground truth 5.067 -0.100 -0.128 -0.987 -0.113 -0.086 0.500

Our result (LM) 5.106 -0.096 -0.128 -0.986 -0.112 -0.078 0.503
Our result (NM) 5.100 -0.105 -0.127 -0.985 -0.114 -0.093 0.501
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Table 4.2: Estimation error of our method on the synthetic cylinder scene.

Rotation error (◦) Translation error (m)
Our result (LM) 0.021 0.008
Our result (NM) 0.027 0.007

Qualitative Evaluation. The color and depth image registration results are shown
in Figure 4.4(d) and Figure 4.4(f), which are the registration results before, and after
our optimization, respectively. The results from the LM and NM algorithms are
almost visually indistinguishable. Visually inspected, our method yields satisfactory
registration (e.g., the edges are well aligned).

4.4.2 Tests on a Real-world Scene

In the real-world task, we used the depth sensor on a Kinect device as our depth
camera, and attached it to a high-resolution color camera; see Figure 4.6. Note that,
our method can be adapted to other types of depth imaging sensors (e.g., a 3D LIDAR
or a ToF camera).

We set up a scene containing three sheets of A4 paper with different orientations,
as shown in Figure 4.7(a). These sheets of paper could just as well have been objects
from an indoor scene such as a laptop screen, a book, a table or similar rigid objects
with well-defined vertices. We then extracted the four corners of each sheet of A4
paper and the metric scene constraint was available as an international standard: the

Figure 4.6: A customized RGB-D camera rig consisting of a high-resolution color
camera, and a Kinect-for-Windows depth sensor. This rig was used in the experi-
mental work described in this chapter.
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Figure 4.7: A real-world scene and its corresponding 3D reconstruction. (a) Three
sheets of A4 paper are used to provide scene constraint. (b) Single view 3D recon-
struction of the extracted points.
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(b) RMS error w.r.t. iteration

Figure 4.8: Single-view 3D reconstruction result and convergence curve (optimized
with LM) for the real-world scene of three sheets of A4 paper.

height and width of an A4 paper are 0.297m and 0.21m respectively.
To obtain a good initialization, we first apply the initial relative pose estimation

approach described in Section 4.3. The single view 3D reconstruction result of the
corner points is illustrated in Figure 4.8(a). We then register the reconstructed points
with the dense point clouds from the depth camera to obtain an initial guess. Taking
the quantization noise in the depth measurements obtained from the Kinect depth
sensor into consideration, we utilized further constraints of the scene that the points
were on planes to accurately estimate the depths for extracted points in the geometric
error minimization procedure. Specifically, for each point on the color image, a local
plane was fitted with some nearest neighbors of vertexes of its corresponding 3D
triangle. The whole estimation procedure including the corner points extraction and
running of the proposed method finished in minutes.

For comparison, the method of [Herrera C et al., 2012] was also applied to cal-
ibrate the same RGB-D camera rig. We used 40 color and depth image pairs of
a planar calibration pattern with 10× 8 checkerboard grids. The corner points on
the color images and plane regions on the depth images were manually selected to
calibrate the RGB-D camera rig. To avoid any bias, the intrinsic parameters from
[Herrera C et al., 2012] were used in our method.

Quantitative Evaluation. In this experiment, the optimization using LM algorithm
converged in 8 iterations, taking about 20 seconds. The convergence curve is shown
in Figure 4.8(b). The RMS error was 3.7mm with the initial relative pose, and was
reduced to 1.2mm after our optimization.

The estimated relative pose parameters from our method as well as that from
[Herrera C et al., 2012] are presented in Table 4.3. As can be seen, the estimated
parameters from the two methods are very similar. However, our method achieves
a final RMS geometric error 1.2mm which is less than half that of the method in
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Table 4.3: Results of our method and [Herrera C et al., 2012] in the real scene. The
rotation is expressed with angle-axis representation.

Angle (◦) Axis Translation (m) RMS error (m)
[Herrera C et al., 2012] 17.225 0.102 -0.986 0.131 0.280 0.046 0.083 0.0027

Our method 17.619 0.104 -0.983 0.153 0.273 0.043 0.091 0.0012

[Herrera C et al., 2012] (2.7mm).

Qualitative Evaluation. For a qualitative visual evaluation of warping, we register
the depth image onto the color image with the obtained transformation parameters.
Figure 4.7(e) shows the registration result of our method. To evaluate the registration
quality more clearly, we added serval objects into the scene and obtained the color
and depth images shown in Figure 4.7(b) and Figure 4.7(d). The registration result
is shown in Figure 4.7(f), and it can be seen that the two images are well registered,
with edges and discontinuities well aligned.

To further evaluate the method and compare with [Herrera C et al., 2012], we
captured several color and depth image pairs in different scenes and used the es-
timated relative pose parameters to register the images. Registration results of the
proposed method and [Herrera C et al., 2012] are compared in Figure 4.9, and our
method achieves comparable or superior performance.

Application in Augmented Reality. Finally, we provide a demonstration of an aug-
mented reality (AR) application for a generically configured RGB-D camera rig,
where a virtual teapot is added into a complex scene. Figure 4.10 shows several
frames of the AR video Using the estimated relative pose, the 3D information from
the depth camera and color information from the RGB camera can be fused accu-
rately and occlusions in the augmented reality image can be effectively handled. The
registration result of the scene images is shown Figure 4.9 (top right).

4.5 Conclusion

We have presented a novel method to achieve relative pose estimation of a 2D color
camera and a depth camera, with partially-known metric information of an observed
scene and in a single-shot fashion. Overall, the required human intervention is min-
imal and not restrictive as users only need to manually mark some points for the
method to automatically obtain the relative pose. The whole procedure can be done
efficiently, and the input can be as simple as three sheets of A4 paper or by other
user provided scene information. Our approach can greatly facilitate mixed and
augmented reality applications, which, for example, might require the use of a spe-
cialized RGB camera in addition to a commodity depth sensor or where it is desired
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Figure 4.9: Registration result comparison. First column: [Herrera C et al., 2012].
Second column: our method. Significant differences are labeled with green boxes.
(Best viewed on screen)

to have a large displacement between the two cameras to cover a large region. Our
method can also be adapted to other types of depth imaging sensors such as 3D
LIDAR, ToF camera and etc. Additionally, as a single-shot method, our general for-
mulation enables postprocessing of arbitrary single images, to, for example, insert
graphical objects, providing some scene constraints in those images are known.
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Figure 4.10: An augmented reality demonstration. The first image is the original
image from the RGB camera. With the relative pose estimation result, we can fuse
the depth information and color information precisely and the virtual teapot has then
been added into the scene accurately. (Best viewed on screen)

The approach proposed in this chapter which directly minimizes the registration
error in order to achieve relative pose estimation is conceptually novel. Using this
approach could not only lead to a more efficient solution than traditional approaches
but also achieve registration results which better conform to our visual evaluation.

In the current work, we only consider some explicit geometric constraints that
can be manually extracted. In future, we plan to investigate incorporating implicit
constraints to further automate the estimation process. For example, we could take
into account the alignment of the discontinuities on the color and depth images.



Chapter 5

Piecewise Parametric Optical Flow
Estimation

As a classic topic in computer vision, optical flow computation has attracted con-
siderable attentions from the community. Remarkable progress has been made in
the past decades, with high-performance optical flow algorithms available nowa-
days [Brox et al., 2004; Zach et al., 2007; Sun et al., 2014b; Xu et al., 2012; Kim et al.,
2013]. Despite these successes, to obtain dense and accurate flow field remains chal-
lenging, especially for general dynamic scenes containing multiple complex, non-
rigid objects,and/or large motions.

This chapter revisits the idea of piecewise parametric optical flow estimation pop-
ularized by Black etc. in the 1990s [Black and Jepson, 1996; Black and Anandan, 1996;
Ju et al., 1996]. Unlike most modern optical flow techniques which capitalize on
dense per-pixel flow vector estimation, these piecewise parametric flow methods as-
sume a low-order parametric motion model within each segmented image piece.
Using parametric models to represent a flow field, while is compact, can be rather
restrictive. When the motion field is very complex, or when image segments do not
conform well to motion segments, the parametrically-fitted flow field can be inaccu-
rate or erroneous. Partly due to this reason, piecewise parametric models are seldom
adopted by modern optical flow methods [Sun et al., 2014b].

In this chapter, we advocate that equipped with a carefully devised energy func-
tion and modern minimization techniques, the piecewise parametric model can be
revitalized to achieve highly-accurate optical flow estimation with state-of-the-art
performance.

Our motivation is described as follows. As in previous work [Black and Jepson,
1996; Ju et al., 1996], we assume that a flow field can be jointly represented by multi-
ple parametric motion models in a piecewise fashion. To ease description, the 8-dof
homography transformation model is used. To achieve accurate model fitting or ap-
proximation, we allow the size and shape of each piece to change adaptively. For
example, some pieces must be large to account for large regions with homogeneous
motion vectors to gain fitting robustness, while others need to be small enough to
capture fine motion details within a small region containing complex motions. The
approach of this chapter is to determine each piece appropriately, and at the same
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(a) Overlay of two frames (b) Ground-truth flow

(c) Estimated pieces (d) Estimated flow

(e) Result of [Brox and Malik, 2011] (f) Result of [Xu et al., 2012]

Figure 5.1: The proposed method estimates optical flow using piecewise parametric
(homography) models. In this example it yields accurate motion estimate on the
actor’s shoulder and back compared to LDOF [Brox and Malik, 2011] and MDP-
OF [Xu et al., 2012].

time to fit a parametric model to each piece (see Figure 5.1 for an illustration). In light
of this, the proposed method is similar to the joint motion estimation and motion seg-
mentation scheme, as investigated in, e.g., [Cremers and Soatto, 2005; Birchfield and
Tomasi, 1999; Sun et al., 2010b, 2012; Unger et al., 2012].

However, there is a subtle but critical difference. In contrast to the above meth-
ods which aimed to segment a motion field into a few independently moving re-
gions [Cremers and Soatto, 2005; Birchfield and Tomasi, 1999; Sun et al., 2010b], our
aim is to fit the entire flow field with a large number of (possibly hundreds of)
piecewise parametric models. The proposed method can effectively handle complex
motions which are challenging for the above methods such as [Birchfield and Tomasi,
1999; Unger et al., 2012].
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5.1 Related work

There is a large volume of work on optical flow estimation. Below we mainly re-
view the related methods for piecewise segmentation based and/or parametric flow
estimation.

Computing parametric flow field on pre-segmented images is a classic idea [Black
and Jepson, 1996; Ju et al., 1996; Xu et al., 2008; Lei and Yang, 2009]. Black and Jepson
[1996] segment the image with color cue and fit variable-order motion model to each
segment independently. Ju et al. [1996] divide the image evenly into rectangular
patches, and fit affine models to them. Interactions between neighboring patches
are involved and defined to be the difference of model parameters. Xu et al. [2008]
fit affine models on regions segmented with color cue and initial flow; the fitting
is regularized with Total Variation of the flow field. Lei and Yang [2009] represent
the image with region tree built from color segmentation; constant flow vector is
computed for each region.

Another category of related methods first estimates candidate parametric models
then assign these models to each pixel as a segmentation process, e.g., [Wills et al.,
2003; Bhat et al., 2006; Chen et al., 2013; Vogel et al., 2013]. Wills et al. [2003] use
multiple homographies fitted from feature matches for segmentation, and Bhat et al.
[2006] use both homographies and fundamental matrices. Recently, Chen et al. [2013]
use translation and similarity transformations extracted from nearest neighbour field
for segmentation. In scene flow estimation, Vogel et al. [2013] assign each pixel a
segment, and each segment a 3D plane; the plane candidates are fitted based on an
input scene flow estimate.

Methods have been proposed for joint motion segmentation and estimation [Mémin
and Pérez, 2002; Cremers and Soatto, 2005; Roussos et al., 2012; Zitnick et al., 2005;
Birchfield and Tomasi, 1999; Yamaguchi et al., 2013; Unger et al., 2012]. For exam-
ple, Mémin and Pérez [2002] proposed such an approach in a variational framework,
however the energy is defined on incremental motion field during the coarse-to-fine
processing. Cremers and Soatto [2005] developed a variational approach to jointly
estimate segmentation boundaries and affine models via continuous optimization.
Roussos et al. [2012] represent and estimate dense motion field via multiple funda-
mental matrices plus an inverse-depth field.

Layered model estimation is another useful technique for motion segmentation
and estimation [Wang and Adelson, 1994; Sun et al., 2010b, 2012]. This approach esti-
mates a few overlapping motion layers, typically represented by parametric models,
and assigns pixels to these layers. The pioneer work of Wang and Adelson [1994]
uses affine layers to represent the motion field, and recent advances by Sun et al.
[2010b, 2012] use affine motion to regularize the flow in each layer. The motivation
of these approaches and their formulations are different from ours.

The proposed method is related to the methods based on over-parameterization [Nir
et al., 2008; Hornáček et al., 2014]. Nir et al. [2008] represent optical flow with para-
metric (e.g., affine and rigid) model defined on every pixel. The work of Hornáček
et al. [2014] defines per-pixel homography for flow estimation. In contrast to point-
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wise parametric model, our method fits piecewise constant parametric models on
adaptive segments.

The optimization scheme we use is similar to the multi-model fitting work [Isack
and Boykov, 2012], and other relevant works in different domains, e.g., [Russell et al.,
2011; Olsson and Boykov, 2012]. Compared to [Isack and Boykov, 2012] where scat-
tered data is fitted to each model independently, we deal with dense, regular image
grids where the models interact with each other to address the spatial continuity of
flow field. Our idea of adaptively changing the domains of image pieces is partly
related to the works of image quilting [Efros and Freeman, 2001] and photo autocol-
lage [Rother et al., 2006].

5.2 Piecewise Parametric Flow Estimation

Given two images frames I1 and I2 as the reference frame and target frame respec-
tively, our goal is to estimate a dense 2D displacement vector u at each pixel x on
I1, based on the the brightness constancy assumption, i.e., I1(x) = I2(y) where
y = x + u. The displacement vector can be represented by a parametric transfor-
mation model T, i.e., , y = T ◦ x.

In this work, we choose to use the 8-dof homography as the parametric model,
although other types of parametric models are also possible. One obvious benefit of
choosing the homography model is, that homographies can be induced by 3D planes
undergoing rigid motion. In fact, even for certain non-rigid motions or deformations,
homography can be used as a good transformation model.

5.2.1 Energy function

Let L = {1, .., K} be a set of discrete labels representing the set of K homography
models, i.e., H = {Hk}, k = 1, . . . , K. Let Ω be the 2D image domain of I1, and
L : Ω → L be a labeling function. Assigning label k = L(x) to pixel x means that
motion of x is induced by homography Hk ∈ H.

Our energy function is defined on both the unknown piecewise parametric mod-
els H, and the unknown pixel labelling L, as

E(H, L) = ED(H, L)+λCEC(H, L)+

λPEP(L) + λMEM(L), (5.1)

where ED is a data term, EC is a flow continuity regularization term, EP is a Potts
model term, and EM is a label cost term [Li, 2007b; Delong et al., 2012] reflecting
the Minimum Descriptor Length (MDL) principle. The λs are weighting parameters.
Note that, one homography model can be be assigned to multiple disjoint pieces, as
this is beneficial to handle occlusion.
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5.2.2 Data term

The data term ED enforces the brightness constancy constraint, subjecting to the
piecewise homography models as

ED(H, L) = ∑
x∈Ω
|I1(x)− I2(HL(x)x)|, (5.2)

where | · | denotes the L1 norm. For brevity, we slightly abuse notations hereafter: H
needs to be understood as an operator rather than matrix; both x and Hx represent
inhomogeneous image coordinates.

To improve the robustness with respect to noise and illumination changes, we use
a robustified data term as in [Brox et al., 2004; Bleyer et al., 2011]. The robust version
takes into account of both brightness constancy constraint and gradient constancy
constraint, in addition to the use of a robust estimator ρD:

ED(H, L) = ∑
x∈Ω

ρD
(
(1− α)|I1(x)− I2(HL(x)x)|

+α|∇I1(x)−∇I2(HL(x)x)|
)
, (5.3)

where we choose ρD to be a truncating function as ρD(·) = min(·, σD) and σD is a
scalar parameter.

5.2.3 Flow continuity (inter-piece compatibility) term

We introduce a flow continuity term EC, which enforces the continuity constraint
of the flow field, rather than the widely-used 1st-order or 2nd-order smoothness
constraint (e.g., TV [Zach et al., 2007] or TGV [Braux-Zin et al., 2013] regularizer).
Let E be the set of 4-connected pixel pairs on the image, EC is defined to be

EC(H, L)= ∑
(x,x′)∈E

w(x, x′) · ρC
(
|HL(x)x̄−HL(x′)x̄|

)
, (5.4)

where x̄ = (x + x′)/2 is the midpoint of (x, x′), ρC(·) = min(·, σC) with σC a scalar
parameter, and w(x, x′) = exp(−β‖I1(x)− I1(x′)‖) is a color-based weighting term.
Note that if L(x) = L(x′), the cost at pixel-pair (x, x′) is nil. The properties of this
term are analyzed as follows.

• EC does not penalize the variations between neighboring pixels within a single
piece (where all interior pixels have the same label), even if the variations are
large. It only penalizes motion discontinuities at inter-piece boundaries (hence
we also call it the inter-piece compatibility term).

• The inter-piece motion discrepancies can be 0 or very small (i.e., the two adja-
cent pieces are compatible) even if their homography models differ a lot. Thus
EC allows model-switch, which is important for handling complex motion.
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(a) Results without flow continuity term EC

(b) Results without Potts model term EP

(c) Results with both EC and EP

Figure 5.2: Effects of energy terms EC and EP. Top row: without EC, the estimated
flow contains many gross errors on the foreground human body with complex mo-
tion. (Occluded regions are masked black) Middle row: without EP, the background
regions with homogeneous motion are not well grouped, leading to 0.05∼0.1 end-
point error increase for them. Bottom row: with both the two terms, the method
handles well both complex and homogeneous motions.

• It is easy to see that EC is a submodular function in terms of discrete labeling
variables L, which is a nice property for discrete energy minimization [Kol-
mogorov and Zabin, 2004].

The effect of this term is illustrated in Figure 5.2. It can be seen that without EC
the estimated flow contains many sharp discontinuous and gross errors.

5.2.4 Potts model term

In addition to the pairwise flow continuity term EC, we use a pairwise Potts model
term EP to encourage spatially coherent labeling. This term is defined only on the
discrete labeling variables as EP(L) = ∑(x,x′)∈E δ

(
L(x) 6= L(x′)

)
, where δ(·) is the 0-1

indicator function which takes 1 if the input argument is true, and 0 otherwise.
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The terms EC and EP have different effects, and are complementary to each other.
EP enforces intra-piece model constancy; it penalizes any model change, no matter how
similar the two models are. In contrast, as mentioned before, EC enforces inter-piece
motion compatibility; it allows compatible model switch, no matter how different the
two models are (cf. Section 5.2.3).

Figure 5.2 illustrates that, without EP the regions with homogeneous motion are
not well grouped. This may lead to inferior flow estimate for these regions. Moreover,
this can also be harmful to other regions: a model can be accidently assigned to
many small pieces during labeling, bringing in difficulties for model estimation (cf.
Section. 5.3.1).

5.2.5 MDL term

To reduce the redundancy of the fitted homographies, we employ an MDL term EM to
penalize the total number of the used homography models, i.e., EM(L) = ∑K

k=1 τ(k),

where τ(k) =
{

1, if ∑x∈Ω δ(L(x) = k) > 0
0, othewise

.

This term is helpful especially when a prior knowledge exists that the flow field
can be well approximated by a relatively small number of parametric models. For
example, in some man-made scenes where there are large planar structures, this
term helps encourage fewer homographies and increase fitting quality. One may set
its weight λM to 0 or very small if no prior is given.

5.3 Optimization

This section presents our optimization techniques. We first present the alternation
based optimization assuming initial parameters given, then show our initialization
method.

5.3.1 Alternation

The energy defined in (5.1) involves both discrete variables L and continuous vari-
ables H. We approach this discrete-continues problem similarly to the multi-model
fitting method of Isack and Boykov [2012]. A block coordinate descent (see Algo-
rithm 5.1) is used that alternates between optimizing over L and H, thus splitting the
original problem into two sub-problems described as follows.

I. Labeling: Solve for L with fixed H. With fixed homographies, the energy mini-
mization reduces to a labeling problem with the energy

E(L) = ED(L)︸ ︷︷ ︸
Unary

potential

+ λCEC(L) + λPEP(L)︸ ︷︷ ︸
(Submodular) Pairwise

potential

+ λMEM(L)︸ ︷︷ ︸
MDL

potential

. (5.5)
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Algorithm 5.1: Piecewise Homography Flow

1 Initialize H, L.
2 while not converge do
3 Fix H, solve for L in (5.5) via graph-cut [Delong et al., 2012].
4 Fix L, solve for H via Algorithm 5.2.
5 end

Algorithm 5.2: Piecewise Homography Fitting

1 Sort the input homographies Hk, k=1,..., K according to their labeling area in L
in descending order.

2 for iteration = 1, . . . , m do
3 for k = 1 : K do
4 Optimize Hk in (5.6) by simplex downhill [Nelder and Mead, 1965].
5 end
6 end

Without the MDL term, the energy corresponds to a standard Markov Random Field
(MRF) problem with unary and pairwise potentials. The α-expansion based graph-
cut method [Boykov et al., 2001] can be used for fast approximate energy minimiza-
tion. We use the method of [Delong et al., 2012] to handle the label costs in the MDL
term.

A large set of homography models (e.g., , 1,000 in our experiments) are generated
during initialization (See Section 5.3.2). For the sake of computational efficiency, if
a homography is not labeled to any pixel after one round of the labeling process of
L, it will be removed from the candidate model set. Another strategy to speed up
computation is restricting the α-expansion within a region of a limited radius on the
image plane (e.g., <100 pixels).

II. Fitting: Solve for H with fixed L. The homography parameters H appear in
the data term ED and flow continuity term EC. With fixed labeling, minimizing the
energy function is an unconstrained continuous optimization problem. If H appears
only in ED, we can optimize the parameters of each homography independently. Un-
fortunately, it appears also in EC which involves pairwise iterations between adjacent
pieces.

To tackle this issue we propose to use an inner block coordinate decent procedure:
the homography is optimized one by one, each time with other homographies fixed.
The homography models with larger labeling areas are first optimized as they are
generally less affected by EC. See Algorithm 5.2 for details. When optimizing a
homography Hk, the energy reads as
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E(Hk) = ED(Hk) + λCEC(Hk)

= ∑
x∈Ωk

ρD
(
(1−α)|I1(x)−I2(Hkx)|+α|∇I1(x)−∇I2(Hkx)|

)
+λC ∑

(x,x′)∈Ek

w(x, x′)·ρC
(
|Hkx̄−HL(x′)x̄|

)
(5.6)

where Ωk = {x ∈ Ω | L(x) = k}, Ek = {(x, x′) ∈ E | L(x) = k, L(x′) 6= k}, and other
variants and functions are as in (5.3) and (5.4). We optimize (5.6) via the derivative-
free Nelder–Mead Simplex Downhill method [Nelder and Mead, 1965]. Similar to
[Zhang et al., 2014], the vertexes of a simplex are initialized with the homographies
of adjacent pieces. We found this strategy to be very effective in reducing the energy.

5.3.2 Initialization

The above alternation-based optimization requires an initialization to start. We pro-
pose a simple and fast algorithm to generate initial homography proposals and la-
beling. We will first use PatchMatch [Barnes et al., 2009] to compute an initial corre-
spondence field. The PatchMatch algorithm is efficient and can handle large motions.
It has been utilized by many optical flow and stereo matching algorithms [Xu et al.,
2012; Lu et al., 2013; Chen et al., 2013; Bleyer et al., 2011].

After obtaining an initial correspondence field, we use a region-grow like algo-
rithm to extract candidate homographies and initial labeling: we use Direct Linear
Transform (DLT) [Hartley and Zisserman, 2005] to fit homographies for small local
regions (e.g., 5×5 windows), and grow the regions to consistent neighboring pixels
for initial labeling. See Algorithm 5.3 for details of this procedure.

5.4 Post-processing

5.4.1 Occlusion handling

We detect occlusion based on the forward-backward flow consistency check, where
the forward flow is the estimated motion field from I to I′ and the backward flow is
the estimated motion field from I′ to I. A pixel x on I will be considered as occluded
after its motion onto I′ if ‖x−H′l′Hlx‖> θ, where H′l′ is the homography of the point
Hlx on the target image, and θ is a scalar threshold. For the detected pixels, we
remove the data term, and label estimated homographies to them via graph-cut.

5.4.2 Refinement

To further improve the results for complex motion, small local deformation may be
necessary to compensate the discrepancy between true flow field and the piecewise
approximation. Therefore we use the publicly available code of the “Classic+NL-
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Algorithm 5.3: Homography proposal generation and initial labelling

1 Initialize a dense motion field by e.g., PatchMatch [Barnes et al., 2009];
2 Initialize a label map with all pixels unlabelled;
3 l ← 0;
4 while unlabelled pixels exist do
5 Pick out an unlabelled pixel x;
6 Fit a homography Hl with points in a small (e.g., 5× 5) window Wx

centered at x using their initial motion vectors;
7 Label unlabelled pixels in Wx with l and push them into queue Q;
8 while Q is not empty do
9 Pop-out a pixel p from Q;

10 foreach q as p’s unlabelled neighbour do
11 if q’s motion fits Hl then
12 Label q with l and push it into Q;
13 end
14 end
15 end
16 l ← l+1;
17 end
18 if l > Lmax (e.g., 1000) then
19 Sort the labels according to their labeling areas;
20 Set all pixels of the l − Lmax labels with smallest areas as unlabelled, then

label each of them with its nearest label on the image.
21 end

fast” method [Sun et al., 2014b] for flow refinement1. Note that we directly refine the
flow on the original image scale and no coarse-to-fine pyramid structure is used.

5.5 Experiments

In this section, we test the proposed method on three public benchmarks: the KITTI
flow benchmark [Geiger et al., 2012a], the MPI Sintel benchmark [Butler et al., 2012],
and the Middlebury flow benchmark [Baker et al., 2011b]. Our method is imple-
mented in C++ & Matlab, and tested on a standard PC with Intel i7 3.4GHz CPU.
In the following experiments, we set α = 0.9, β = 5, σD = 10, iteration number of
Algorithm 5.1 to be 5, maximal iteration of Algorithm 5.2 to be 15. Other parameters
are trained on the benchmarks and will be explained in the corresponding sections.
During initialization, we allow a maximum number of 1, 000 pieces. For KITTI and
Sintel datasets, we half-size the images before running our method, and interpolate
the estimated flow field back to the original size before refinement.

1The refinement using this method yields worse results in occluded regions; we keep the original
flow for pixels that are very likely occluded (which failed the forward-backward check with a large
threshold θ = 20).
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Table 5.1: End-point Error results on part of the training sequences in KITTI bench-
mark (3-pixel error threshold).

Out-Noc Out-All Avg-Noc Avg-All
Without MDL 5.94 % 11.44 % 1.58 3.69

Without refinement 5.76 % 10.84 % 1.41 3.00
Full 5.56 % 10.81 % 1.36 2.98

(a) λM = 0 (135 models) (b) λM = 300 (56 models)

(c) λM = 600 (36 models) (d) λM = 900 (27 models)

Figure 5.3: Effects of different MDL weights. Larger MDL weight leads to less ho-
mography models and larger pieces. We found that usually around 40∼ 80 homog-
raphy models are adequate for flow estimation on KITTI benchmark.

5.5.1 Results on KITTI

The KITTI dataset is a challenging real-world dataset containing non-lambertian sur-
faces, different lighting conditions, and large displacement motions.

We first selected 20 image pairs with ground-truth flow fields from the training
set. Based on the accuracy, we set λC = 1, λP = 4, λM = 400, σC = 10, and θ = 1.5.
The results on these images are shown in Table 5.1, where “Out-Noc” and “Avg-Noc”
refer respectively to the outlier ratio and average end-point error in non-occluded
regions and “Out-All” and “Avg-All” to all regions with ground-truth. The effect of
the MDL term is obvious on this benchmark. Table 5.1 shows that the MDL term
improves the results obtained without MDL term (i.e., λM = 0) by about 10%∼20%.
Figure 5.3 presents the estimated pieces with different MDL weights. We found
that 40∼ 80 homography models are generally adequate for flow estimation on this
dataset. Table 5.1 also shows that the refinement step improves the results by around
3%∼5%.

We then ran our method on the test set where the ground-truth is hidden. Fig-
ure 5.4 shows two examples of our homography motion segmentation and flow esti-
mation results. Note that both the large surfaces of road, green belt, building facades,
cars, etc., and the small objects such as road lamp and sign are well segmented. Ta-
ble 5.2 compares our results with state-of-the-art two-frame optical flow methods. At



96 Piecewise Parametric Optical Flow Estimation

Overlay of I and I′

Estimated pieces

Estimated flow (overlaid on I)

Figure 5.4: Example results of our method on KITTI benchmark. The top row over-
lays the input two images. The middle row shows the estimated pieces. The last row
shows the estimated flow (with color coding of the benchmark). The flow images are
overlaid on the first frames for better visualization. Note that in the first example,
motions of small objects such the road lamp and sign are successfully estimated.

Table 5.2: Comparison with existing two-frame optical flow methods on the test set
of the KITTI benchmark.

> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Avg-Noc Avg-All

Our method 8.04% 13.76% 5.76% 10.57% 4.64% 8.84% 3.93% 7.72% 1.3px 2.9px

NLTGV-SC 7.64% 14.55% 5.93% 11.96% 5.08% 10.48% 4.50% 9.42% 1.6px 3.8px
[Ranftl et al., 2014]

TGV2ADCSIFT 8.04% 17.87% 6.20% 15.15% 5.24% 13.43% 4.60% 12.17% 1.5px 4.5px
[Braux-Zin et al., 2013]

BTF-ILLUM 8.84% 14.14% 6.52% 11.03% 5.38% 9.29% 4.64% 8.11% 1.5px 2.8px
[Demetz et al., 2014]

DeepFlow 9.31% 20.44% 7.22% 17.79% 6.08% 16.02% 5.31% 14.69% 1.5px 5.8px
[Weinzaepfel et al., 2013]

Classic+NL 12.94% 23.50% 10.49% 20.64% 9.21% 18.80% 8.36% 17.42% 2.8px 7.2px
[Sun et al., 2014b]

EPPM 17.49% 28.07% 12.75% 23.55% 10.22% 20.85% 8.58% 18.87% 2.5px 9.2px
[Bao et al., 2014]

LDOF 24.43% 33.89% 21.93% 31.39% 20.22% 29.58% 18.83% 28.07% 5.6px 12.4px
[Brox and Malik, 2011]

the time of evaluation2, our method is ranked the first among all published methods,
under the by default 3-pixel threshold metric. In fact, our method shows improved
performance on almost all the reported metrics used in KITTI.

2The KITTI benchmark receives the flow estimates for the test set submitted by a user, evaluates
them, and publishes the errors online for method comparison. So do Middlebury and MPI Sintel.
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Table 5.3: Comparison of endpoint errors on the training set of Middlebury bench-
mark.

Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus

Ours 0.118 0.095 0.445 0.146 0.072 0.196 0.671 0.224

Ours 0.125 0.148 0.537 0.150 0.089 0.275 0.940 0.190w/o refinement
Classic+NL 0.115 0.091 0.438 0.154 0.077 0.207 0.377 0.229[Sun et al., 2014b]
Hornáček 0.169 0.184 0.517 0.222 0.114 0.300 0.905 0.342[Hornáček et al., 2014]

Input image I Estimated pieces Estimated flow

Figure 5.5: Qualitative results on “Dimetrodon” and “Grove3” sequences of the Mid-
dlebury benchmark. (The ground-truth flow fields can be found in Figure 5.8 )

5.5.2 Results on Middlebury

The Middlebury optical flow benchmark only contains relatively small displace-
ments. It has been extensively studied in recent years and sub-pixel accuracy has
been achieved. However the motion is complex, e.g., there are many non-rigid de-
formations, making it difficult for parametric model based methods.

We tuned the parameters on the training set, ending up with λC = 0.5, λP = 2,
λM = 100, σC = 100 and θ = 1. The MDL weight is tuned to be much smaller
than that on the KITTI benchmark, as there are many complex motions and small
objects, necessitating more homography models. Table 5.3 shows our results with
and without refinement, compared to the Classic+NL method [Sun et al., 2014b],
and per-pixel homography estimation method [Hornáček et al., 2014]. In general,
our final results are comparable to [Sun et al., 2014b] on the training set. Compared
to [Hornáček et al., 2014], without refinement, our method outperforms [Hornáček
et al., 2014] in 6 out of the 8 sequences, and outperforms it on all the sequences
after refinement. Figure 5.5 shows some qualitative results of our method. Visually
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(a) Input image I (b) Flow of [Unger et al., 2012] (c) Labeling of [Unger et al., 2012]

(d) Input image I′ (e) Our flow (unrefined) (f) Our labeling

Figure 5.6: Comparison with the method of [Unger et al., 2012] on the Middlebury
“DogDance” sequence. Our method is less suffered from the complex non-rigid
motion; the flow and labelling results are clear better than [Unger et al., 2012] (images
reproduced from their paper).

(a) Overlay of the input I and I′ (b) Estimated pieces (c) Estimated flow (overlaid on I)

Figure 5.7: Results of our method in the presence of large motions of small objects.
Input images are from the “Beanbags” sequence of the Middlebury dataset.

inspected, it gives smooth and accurate flow fields. It is able to group large regions
with homogeneous (homography) motion (e.g., the ground and rocks in “Grove3”),
meanwhile segment out the small regions with complex motions (e.g., the leaves).

Figure 5.6 shows a challenging case (the “DogDance” sequence) with complex
nonrigid motion. Our flow and segmentation are significantly better than [Unger
et al., 2012], further demonstrating the ability of the proposed method in complex
motion handling. Figure 5.7 shows the results of our method on the “Beanbag”
sequence, which contains small objects with large motions. Figure 5.8 compares
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[Chen et al., 2013] (w/o refine.) Ours (w/o refinement) Ground truth

Figure 5.8: Qualitative comparison of [Chen et al., 2013] which uses global translation
and similarity models (images reproduced from [Chen et al., 2013]), and our method.
The flow fields shown here from both methods are without the refinement process.
From top to bottom: “Dimetrodon”, “Grove3” and “RubberWhale”.

Table 5.4: Comparison of endpoint errors with existing methods on the test set of the
Middlebury benchmark. The numbers in brackets show the rank of each method on
each sequence. Results of [Unger et al., 2012] are reproduced from their paper.

Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

Ours 0.08 (7) 0.21 (27) 0.23(9) 0.16 (30) 0.56 (7) 0.30 (5) 0.15 (54) 0.43 (8)

Classic+NL 0.08 (7) 0.22 (33) 0.29 (25) 0.15 (19) 0.64 (18) 0.52 (48) 0.16 (65) 0.49 (19)
[Sun et al., 2014b]

MDP-Flow2 0.08 (7) 0.15 (1) 0.20 (4) 0.15 (18) 0.63 (16) 0.26 (3) 0.11 (11) 0.38 (3)
[Xu et al., 2012]

NN-field 0.08 (7) 0.17 (7) 0.19 (2) 0.09 (1) 0.41 (1) 0.52 (48) 0.13 (32) 0.35 (2)
[Chen et al., 2013]

Layer++ 0.08 (7) 0.19 (15) 0.20 (4) 0.13 (6) 0.48 (3) 0.47 (36) 0.15 (54) 0.46 (13)
[Sun et al., 2010b]

Unger 0.09 0.27 0.28 0.18 0.88 1.79 0.11 0.74
[Unger et al., 2012]
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(a) Overlay of I and I′ (b) Ground-truth flow

(c) Estimated pieces (d) Estimated flow

Figure 5.9: Sample results on the Sintel clean sequences.

the proposed method with method of [Chen et al., 2013] that uses translation and
similarity models extracted from nearest neighbour fields. Visually inspected, our
method yields smoother, and more accurate optical flow estimates.

Table 5.4 compares the performance of our method versus others on the test set.
As can be seen, our results are comparable to state-of-the-art methods. Note that
our results are superior to or on par with results of [Sun et al., 2014b] on all these
sequences except for “Wooden”, and outperform [Unger et al., 2012] on all the se-
quences except for “Yosemite”.

5.5.3 Results on MPI Sintel

The Sintel benchmark contains long image sequences with large motions, severe il-
lumination changes, and specular reflections. Moreover, it contains large numbers of
non-planar surfaces and complex non-rigid deformations, making it more challeng-
ing for the proposed piecewise parametric method.

We selected 23 image pairs (1 pair per sequence) from the clean pass of training
set to tune the parameter. The tuned parameters are λC = 1, λP = 1, λM = 50,
σC = 100 and θ = 1.5. The MDL is tuned to be very small due to the presence
complex motions, e.g., the non-rigid motion of human and animal bodies. Figure 5.1
has shown a typical example and the result of our method, and an another example
is presented in Figure 5.9.

We then ran the method on the test set, and Table 5.5 presents the results of our
method, compared with a few state-of-the-art methods. At the time of evaluation,
our method ranks 2nd, and outperforms all published methods on the clean pass.
Note that it performs especially well on the occluded regions, thanks to the use of
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Table 5.5: Comparison of end-point error with state-of-the-art methods on the test set
of the Sintel benchmark. “all" / “noc" / “occ" indicate all / non-occluded / occluded
regions respectively.

Clean pass Final pass
all noc occ all noc occ

Our method 4.388 1.714 26.202 7.423 3.795 36.960
TF+OFM [Kennedy and Taylor, 2015] 4.917 1.874 29.735 6.727 3.388 33.929
DeepFlow [Weinzaepfel et al., 2013] 5.377 1.771 34.751 7.212 3.336 38.781

MDP-Flow2 [Xu et al., 2012] 5.837 1.869 38.158 8.445 4.150 43.430
EPPM [Bao et al., 2014] 6.494 2.675 37.632 8.377 4.286 41.695

Classic+NL [Sun et al., 2014b] 7.961 3.770 42.079 9.153 4.814 44.509

parametric models in the post-processing stage. The proposed method performs in-
feriorly on the final pass, ranking 7th among all evaluated methods. We find that
the synthetic atmospheric effects on the final sequences cause difficulties for both
the PathMatch-based initialization and our main algorithm. However, on the clean
sequences for which the brightness constancy constraints satisfy, our method consis-
tently produces accurate estimates.

5.5.4 Running Time

The proposed method takes a few hundreds of seconds to estimate a forward flow
field of size 640×480 in our experiment settings. The optimization time spent in
Algorithm 5.1 is about 200∼ 500 seconds depending on the number of models. The
initialization stage takes about 5 seconds and the refinement stage takes about 60
seconds.

5.6 Conclusion

We have presented a simple method for optical flow estimation using piecewise para-
metric model. Thanks to the new energy design and the joint discrete-continuous
optimization, our method produces high-quality results that are superior to or com-
parable with state-of-the-art methods. We believe that piecewise parametric flow
estimation deserves a position in highly accurate optical flow estimation.

In future, we would like to investigate high-order parametric models (e.g., cubic
or bi-cubic model) since the proposed method is general enough, and try different
initialization methods. Explicitly incorporating occlusion reasoning would be an-
other interesting future work.
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Chapter 6

Layerwise Optical Flow Estimation
under Transparency or Reflection

Most optical flow methods assume that there is only one imaging layer on the ob-
served image with the brightness of scene objects, and use the brightness constancy
constraint (BCC) to estimate the optical flow for scene objects. This single imaging
layer assumption, however, can be often violated in real-world situations, especially
in cases involving transparency or reflection. Transparencies and reflections are fre-
quently met in the imaging process, e.g., when one is looking at a street scene from
inside a car through a stained windscreen, or seeing through a thin layer of rain,
looking into a window with semi-reflections on the window surface etc. The BCC
will generally not hold for the resultant double-layer images, even in ideal noise-free
cases. If the optical flow is estimated naively on the input images, the results will be
erroneous. See Figure 6.1 for an example.

In the aforementioned situations, the observed image I can be modeled as a su-
perposition of two constituting layers, denoted as I = L1 ⊕ L2, where ⊕ denotes
some suitable layer combination operator. Without loss of generality, we call L1 the
background scene layer, which corresponds to the image of the desired scene that
we intend to capture, and L2 the foreground distracting layer, which corresponds to
the semi-transparent media (e.g., a glass window with dirt or reflections on it) or the
semi-reflected image.

The main goal of this chapter is to robustly estimate the optical flow field of the
scene objects (i.e., the background layer), which is of concern for vision systems. We
consider two general cases: the foreground distracting layer is stationary, or dynami-
cally changing.

Let I and I′ be two time-consecutive frames of a scene which contain the afore-
mentioned two layers. In the presence of a dynamic foreground layer, there are two
legitimate optical flow fields – one for the foreground layer and another for the back-
ground layer. Denote the two flow fields generated by the movements of the two
layers as U and V, respectively. The relationships among the observed images, the
image layers, and the optical flow fields can be given as

103
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(a) Input image I (b) Input image I′ (c) Naive flow

(d) Estimated background layer (e) Estimated flow (f) GT flow

Figure 6.1: Illustration of the optical flow estimation problem under transparency1.
In this example, the observed images in (a)(b) are corrupted by rain drops. Poor
results will be obtained if directly estimating flow on the input images, as shown in
(c). The proposed method estimates optical flow based on image layer severation.
It can produce a robust optical flow estimate as in (e), meanwhile recover a clean
background image layer as in (d).

I = L1 ⊕ L2yU

yV

I′ = L′1 ⊕ L′2

When V ≡ 0 and L2 ≡ L′2, i.e., the foreground layer is static, our task is to estimate
a single flow field U for background layer, and also estimate the layers L1, L′1, L2.
Otherwise, when a dynamic foreground layer exists, we will estimate two flow fields
U, V as well as the layers L1, L′1, L2, L′2. As we explicitly perform image layer sep-
aration (i.e., estimating L1, L′1, L2, L′2), an appealing byproduct of our method is the
restoration of the clear scene images.

For either of the two cases with a static or dynamic foreground layer, this is a
highly ill-posed problem, especially considering optical flow estimation and image
layer separation problems per se are known to be ill-posed. From only two input
images, our task is to recover one or two optical fields, as well as the two unknown
layers.

Little work has been reported in the literature concerning this double-layer im-

1The scene image is from [Liu et al., 2008].
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age optical flow estimation problem, with only a few exceptions in the early days of
computer vision research, e.g., [Shizawa and Mase, 1990, 1991; Langley et al., 1992b;
Darrell and Simonecelli, 1993]. These works however often used over-simplified as-
sumption and restrictive motion field models, such as assuming a constant flow field
over time or space (e.g., globally translating). Bergen et al. [1992b] proposed a “three-
frame algorithm" to recover two constituting flow fields, assuming the flow field is
constant over at least three frames.

In contrast, we remove these restrictive assumptions, and propose a two-frame
algorithm for robustly recovering the flow field(s). The proposed method works for
generic motions and is thus applicable to a much wider range of practical situations
for robust optical flow estimation.

6.1 Related Work

This chapter is concerned with optical flow estimation in double-layer images where
both layers can possibly be moving. Despite that the phenomena of such multiple
imaging layers and motions are frequently encountered in reality, few papers in the
literature have been devoted to this topic. This is in a sharp contrast to the existence
of a vast amount of papers on the classic optical flow problems (an analysis of recent
practices of optical flow can be found in [Sun et al., 2014a]).

One of the first work for multiple optical flow computation is possibly due to
Shizawa and Mase [1990, 1991]. By assuming the two underlying flow fields to be
constant (e.g., pure translating), they derived a generalized brightness constancy con-
straint for the multi-motion case. However, this constant motion assumption is re-
strictive, not applicable for general flow fields with complex motions. Nevertheless,
their method, being one of the first, has inspired a number of variants and exten-
sions [Pingault and Pellerin, 2002; Auvray et al., 2009; Ramirez-Manzanares et al.,
2006; Toro et al., 2000]. Some variants operate in the Fourier domain, e.g., [Langley
et al., 1992a,b; Darrell and Simonecelli, 1993].

The flow estimation problem for two-layer images in this chapter should not be
confused with those works concerning “motion-layer segmentation", albeit the two
do share some similarity and the boundary between them can sometimes be fuzzy.
For example, Wang and Adelson [1994] proposed to segment the image layers based
on a pre-computed optical flow field. Irani et al. [1994] used temporal integration
to track occluding or transparent moving objects with parametric motion. Black and
others [Black and Anandan, 1996; Ju et al., 1996; Sun et al., 2010b; Wulff and Black,
2014] proposed a number of algorithms for multiple parametric motion estimation
and segmentation. Yang and Li [2015] fit a flow filed with piecewise parametric
models. Weiss [1997] presented a nonparametric motion estimation and segmenta-
tion method to handle generic smooth motions, thus this method is more related to
ours. However, the method of Weiss and most other aforementioned methods pri-
marily focused on image and motion segmentation, while we decompose the whole
image into two composite brightness layers, and compute one generic flow field on
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each layer.
The proposed method involves solving two tasks simultaneously: optical flow

field estimation, and reflection/transparent layer separation. For the second task,
many research works have been published previously. For example, Levin et al.
[2002]; Levin and Weiss [2007] proposed methods for separating an image into two
transparent layers using local statistics priors of natural images. Single image solu-
tions are also investigated by Li and Brown [2014] and Yeung et al. [2008]. To utilize
multiple frames, layer separation methods have been proposed based on aligning
the frames with one layer [Wexler et al., 2002; Li and Brown, 2013; Guo et al., 2014]
or multiple layers [Szeliski et al., 2000; Gai et al., 2012]. Sarel and Irani [2004] pre-
sented an information-theory based approach for separating transparent layers by
minimizing the correlation between the layers. Chen et al. [2009] gave a gradient
domain approach for moving layer separation which is also based on information
theory. Schechner et al. [2000] developed a method for layer separation using image
focus as a cue. By using independent component analysis, Farid and Adelson [1999]
proposed a layer separation method which works on multiple observations under
different mixing weights. Simon and Park [2015] proposed an average-image prior
for reflection removal for in-vehicle black box videos. Techniques for image layer sep-
aration were also developed in the field of intrinsic image/video extraction [Tappen
et al., 2005; Weiss, 2001; Ye et al., 2014].

In the context of stereo matching with transparency, Szeliski and Golland [1998]
simultaneously recovered disparities, true colors, and opacity of visible surface ele-
ments. Tsin et al. [2006] estimated both depth and colors of the component layers.
Li et al. [2015b] proposed a simultaneous video defogging and stereo matching algo-
rithm.

The recent work of Xue et al. [2015] has a very similar formulation compared
to ours. However, the goal and motivation of obstruction-free photography from a
video sequence in [Xue et al., 2015] are different from ours. The underlying assump-
tions on the flow fields, the employed flow solvers, and the initialization techniques
are dissimilar.

6.2 Problem Setup

For ease of presentation, in formulating the problem (Section 6.2 and Section 6.3) and
presenting the optimization (Section 6.4), we will focus on the dynamic foreground
case (i.e., double-layer flow estimation). The static foreground case (i.e., single-layer
flow estimation) is simpler and can be derived accordingly. Note that, the static
foreground case, though relatively simpler, is also of interest and very challenging.

6.2.1 Linear Additive Imaging Model

In the previous discussion, we simply used I = L1 ⊕ L2 to denote the layer superpo-
sition operation, but did not give its exact form. To make the idea more concrete, we
opt for the linear additive model + as a concrete example for ⊕, i.e., I = L1 + L2.
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The linear additive model itself, while simple, has been used successfully in the
past in solving many vision problems involving transparency and reflection (e.g.,
in shadow removal [Yeung et al., 2008], image matting [Szeliski and Golland, 1998]
and reflection separation [Li and Brown, 2014]). Moreover, by applying logarithm
operation, a multiplicative superposition model can also be converted to an additive
one.

Taking two frames of observations, I and I′, at two consecutive time steps t and
t + 1, we have

I(X) = L1(X) + L2(X), (6.1)

I′(X) = L′1(X) + L′2(X), (6.2)

where X is a matrix indexing all pixel coordinates.

6.2.2 Double Layer Brightness Constancy

In the presence of transparencies or reflections, it is important to note that the con-
ventional BCC condition cannot be applied directly to the observed images. Below,
we will derive a generalized BCC condition which is applicable to the double-layer
case.

The basic assumption that we will base our method on is: any component layer
of the observed image must satisfy the brightness constancy condition individually.
This is a realistic and mild assumption which is applicable to a wide range of trans-
parency and reflection phenomena encountered in natural images. Cases that violate
this basic assumption are deemed beyond the scope of this current work.

Suppose, during two small time steps, layer L1 changed to L′1 according to a
motion field of U, and layer L2 changed to L′2 according to a different motion field V.
Based on the assumption that the brightness of the objects in each individual layer is
constant, we have

L1(X) = L′1(X + U), (6.3)

L2(X) = L′2(X + V). (6.4)

Together with the imaging model in (6.1) and (6.2), we call the above constraints the
generalized double-layer BCC condition for an input double-layer image pair (I, I′).

6.2.3 The Double Layer Optical Flow Problem

Given the above linear additive imaging model as well as the generalized BCC con-
ditions, we aim to recover both L1, L′1, L2, L′2 and U, V.

To make this severely ill-posed problem trackable, we adopt the energy mini-
mization framework, and base it on the generalized BCC conditions as well as priors
for optical flows and image layers. The energy function reads as

E = EB + λLEL + λFEF, (6.5)
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where EB corresponds to the double-layer BCC condition, EL and EF are the regular-
ization terms (or prior terms) for the latent image layers, and the unknown optical
flow fields, respectively. The λs are trade-off parameters.

In energy (6.5), we use EB = EB(L1, L′1, L2, L′2, U, V) to represent the BCC condi-
tion in the following way2:

EB =‖L1(X)− L′1(X + U)‖+ ‖L2(X)− L′2(X + V)‖. (6.6)

We use ‖ · ‖ to denote the `1-norm in this chapter unless otherwise specified. We
choose to use `1-norm as the cost function mainly for its robustness [Brox et al., 2004;
Zach et al., 2007] and its convenience in optimization. The two regularization terms
EL and EF will be detailed in the following section.

6.3 Regularization

Using prior information as regularization is a common practice for solving ill-posed
problems. In this work, the task is to separate the input frames into latent layers, and
to recover the associated flow fields.

Priors are generally task-dependent. By enforcing different priors to latent layers
and to optical flow fields, the algorithm can be adapted to solving different tasks.
For example, if one knows the two latent layers are images of natural scenes, then
the layers can be assumed to have sparse gradients (i.e., satisfying the well-known
natural image priors). Moreover, for general optical flow fields, one can assume they
are piecewise constant or piecewise smooth.

6.3.1 Natural Image Prior: Sparse Gradient

The research in natural image statistics shows that images of typical real-world scenes
obey sparse spatial gradient distributions [Tappen et al., 2005; Levin and Weiss, 2007].
The distribution of a natural image L can often be modeled as a generalized Laplace
distribution (a.k.a., generalized Gaussian distribution), i.e.,

P(L) ∼ ∏
x∈X

exp(−|∂xL(x)|p − |∂yL(x)|p), (6.7)

where the power p is a parameter usually within [0.0, 1.0]. A convenient choice is
p = 1, with which the energy is reduced to the `1-norm of image spatial gradients.
For ease exposition, we will let p = 1 in this work, though bear in mind that using
other values of p is possible and may be advantageous in particular applications.

Taking the negative logarithm, the prior in (6.7) can be represented in the energy
minimization form, i.e.,

‖∇L(X)‖ → min, (6.8)

2For brevity, hereafter we use a short-hand notation: ‖ f (X)‖ and ‖ f (X)− g(X)‖ should be under-
stood as ∑x∈X ‖ f (x)‖ and ∑x∈X ‖ f (x)− g(x)‖ respectively, where f (x) and g(x) are the layer brightness
or gradient values at the pixel coordinate x.
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where ∇ = (∂x, ∂y)>. Therefore, the latent layer regularization term EL(L1, L′1, L2, L′2)
can be written as

EL =‖∇L1(X)‖+‖∇L′1(X)‖+‖∇L2(X)‖+‖∇L′2(X)‖. (6.9)

6.3.2 Optical Flow Priors: Spatial Smoothness

Early methods for solving multi-layer optical flow problem often made restrictive
assumptions about the unknown flow fields. For example, [Bergen et al., 1992b]
proposed a three-frame algorithm for recovering two component motion fields by
assuming that the motion fields are constant over time, and [Shizawa and Mase,
1990] was built upon a local constant motion assumption to derive its basic equation.
In this work, these restrictions are removed and the proposed method can handle
more general and more complex motion fields.

We use a general assumption on flow field, namely, the optical flows are gen-
erally piecewise constant or piecewise smooth. To capture this prior, we adopt the
total variation (TV) model [Zach et al., 2007] or total generalized variation (TGV)
model [Bredies et al., 2010]. Specifically, a flow field U will be regularized by the
following energy:

‖U‖TGVk → min, (6.10)

where ‖U‖TGVk
.
= TGVk(Ux) + TGVk(Uy), and TGVk( · ) denotes the k-th order TGV

measure for horizontal and vertical flow components Ux and Uy.

In general, the k-th order TGV favors solutions that are piecewise composed of
(k−1)-th order polynomials: with k = 1, TGV1 reduces to the TV model which favors
piecewise constant fields; with k = 2, TGV2 favors piecewise affine fields. We will
only consider TV and TGV2 in this work, and the resultant prior regularization term
EF = EF(U, V) for the flow fields can be written as

EF(U, V) = ‖U‖TGVk + ‖V‖TGVk . (6.11)

where k = 1 (i.e., TV) or 2.

6.4 Energy Minimization

6.4.1 The Overall Objective Function

By stacking all the constraints over both latent layers and flow fields, we reach an
energy minimization problem as



110 Layerwise Optical Flow Estimation under Transparency or Reflection

min E(L1, L′1, L2, L′2, U, V) = EB + λLEL + λFEF

=
(
‖L1(X)−L′1(X+U)‖+ ‖L2(X)−L′2(X+V)‖

)
+ λL

(
‖∇L1‖+‖∇L′1‖+‖∇L2‖+‖∇L′2‖

)
+ λF

(
‖U‖TGVk + ‖V‖TGVk

)
, (6.12)

subject to

I = L1 + L2, I′ = L′1 + L′2, (6.13)

0 ≤ L2 ≤ min(I, c), 0 ≤ L′2 ≤ min(I′, c). (6.14)

where the X’s in the gradient terms of (6.9) are omitted for brevity.
Note that, to distinguish background and foreground layers, we introduce in

(6.14) the element-wise bound constraints on the layers. We assume the foreground
layer containing transparency or reflection has weaker signal, and use a small con-
stant scalar c (e.g., c = 0.25 for brightness values in the range of [0,1]) as its brightness
upper bound. This can be understood as an additional bound prior for layer sepa-
ration. Also note that, putting aside (6.14), there is a global shift ambiguity for the
layer values: adding an arbitrary scalar s ∈ R to L1, L′1 then −s to L2, L′2 dose not
change the energy in (6.12), nor dose it affect (6.13). This is because all the terms in
(6.12) depend on value difference rather than absolute value. Nevertheless, both the
lower and upper bounds in (6.14) help constrain the absolute values.

6.4.2 Alternated Minimization

To solve the above energy minimization problem, we first substitute the additive
model constraints in (6.13) as hard constraints to eliminate L1 and L′1 in (6.12). Con-
sequently, the energy function is now defined only on latent layers L2, L′2 and optical
flows U, V.

Then, examining the energy form in (6.12), we notice that: i) the prior terms for
optical flow field, i.e., EF, is independent of the prior term for latent layers EL; and
ii) the BCC energy term EB is the only term that links the flow estimation with latent
layer separation. Based on these observations, we solve the minimization problem
via block coordinate descent in an alternating fashion.

Specifically, starting from a proper initialization, our algorithm alternately solves
the following two sub-problems:

• (Layer Separation): Given current flow field estimates {U, V}, solve for image
layers {L2, L′2} via the following minimization:

min
L2,L′2

(
EB(L2, L′2) + λLEL(L2, L′2)

)
. (6.15)

• (Flow Computation): Given current image layers {L2, L′2}, estimate {U, V} by
solving the following two-layer optical flow problem:
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min
U,V

(EB(U, V) + λFEF(U, V)) . (6.16)

More details are given below.

6.4.2.1 Update the image layers

Given current optical flow estimates U and V, the latent image layers L2, L
′
2 can be

updated by solving the following optimization problem:

min
L2,L′2
‖(I−L2)(X)−(I′−L′2)(X+U)‖+‖L2(X)−L′2(X+V)‖

+λL
(
‖∇(I−L2)‖+‖∇(I′−L′2)‖+‖∇L2‖+‖∇L′2‖

)
subject to 0≤L2≤min(I, c), 0≤L′2≤min(I′, c), (6.17)

This is a convex optimization problem defined on L2 and L′2, and the cost function
can be arranged into

min
l
‖A · l− b‖,

subject to lbi ≤ li ≤ ubi, ∀i (6.18)

where A and b encode all the `1 constraints on latent layers, which are extremely
sparse (only a few elements in each row are non-zero). l is a column vector containing
elements in L2 and L′2. lbi and ubi are constant bounds from (6.14). The constraints
are linear function of the latent layers L2 and L′2, thus this problem can be solved as
a linear programming using off-the-self solvers.

Nevertheless, to utilize the sparse structure in the problem and speed up the
implementation, we solve the problem by using a tailored version of Iteratively
Reweighted Least Squares (IRLS) [Chartrand and Yin, 2008]. With IRLS, one can
also adapt the formulation to different priors readily, e.g., replacing `1-norm with
`p-norm (0< p<1).

There are some issues need to be considered in using IRLS to solve our problem.
As shown in (6.17) and (6.18), the solution vector is confined by both lower and up-
per bounds. To deal with these bounds, one may add a projection operator inside
the iteration loop of IRLS to guarantee the solution bounded (see Line 5 in Algo-
rithm 6.1). However, it can be seen from (6.17) that, when the bounds are ignored,
there is a offset scale ambiguity: adding any constant scalar to L2, L′2 does not affect
the objective function. To resolve this ambiguity, we shift the solution vector such
that it minimizes the objective function after projection. The shifting scalar can be
efficiently computed via a 1D search, as shown in Line 4 of Algorithm 6.1.

We found our modified IRLS algorithm outlined in Algorithm 6.1 to be both
effective and efficient in solving the large-scale sparse linear problem.

Use of Color Images. The above formulations can be easily extended to color RGB
images. With color images, the double-layer BCC term EB and layer regularization
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Algorithm 6.1: Iteratively reweighted least squares (IRLS) with shift-projection
operation in updating latent layers

Input: l(0)

Output: l(n)

1 for t = 1, . . . , n do
2 w(t) = [. . . , w(t)

i , . . .], where w(t)
i = |Ai · l(t−1) − bi|−1 . Reweighting

3 l(t) = (ATW(t)A)−1ATW(t)b, where W(t) = diag(w(t)) . Least square solver

4 l(t) = l(t)+1 ∗ argmin
s

∑
i
|min(max(l(t)i +s, ubi), lbi)−bi| . Shift

5 l(t)i = min(max(l(t)i , ubi), lbi), ∀i . Projection
6 end

term EL will be evaluated at R-G-B channels separately. The flow fields U and V are
shared by all three channels.

6.4.2.2 Update the flow fields U and V

Given current layer estimates L2, L′2, and L1 = I− L2, L′1 = I′ − L′2, the next step is to
update the associated two flow fields U and V. This is done by solving the following
optimization problem:

min
U,V
‖L1(X)− L′1(X + U)‖+ ‖L2(X)− L′2(X + V)‖

+ λF
(
‖U‖TGVk + ‖V‖TGVk

)
. (6.19)

The computations for these two flow fields are in fact separable. This can be
easily seen from the above optimization, as the cost function can be expressed as the
sum of two terms, each of which can be solved in isolation, i.e., given {L1, L′1, L2, L′2},
solve

min
U
‖L1(X)− L′1(X + U)‖+ λF‖U‖TGVk , (6.20)

min
V
‖L2(X)− L′2(X + V)‖+ λF‖V‖TGVk . (6.21)

To solve the above optical flow problems, we use quadratic relaxation and in-
troduce an auxiliary flow field to decouple the BCC term and regularization term,
similar to [Zach et al., 2007; Steinbrucker et al., 2009]. Taking the minimization of U
in (6.20) for example, we introduce an auxiliary flow field Λ, and relax (6.20) as

min
U,Λ
‖L1(X)− L′1(X + Λ)‖+ ∑

i=1,2

1
2θ

(Λi −Ui)
2 + λF ∑

i=1,2
TGVk(Λi), (6.22)

where θ is a small constant (0.2 in our implementation) such that Λ and U are close,
U1, Λ1 are horizontal flows and U2, Λ2 are vertical flows. (6.22) is minimized via
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Algorithm 6.2: The primal-dual algorithm to solve argminU
1
2θ‖U − Λ‖2

2 +
TV(U) in updating flow fields. Here U and Λ are the horizontal or vertical
components of the flow filed. P is the dual variable of U.

Input: Λ

Output: U
1 Set U(0) = Ū(0) = Λ, P(0) = 0, σ = τ = 1√

8
2 for t = 1, . . . , n do

3 P(t) = P‖·‖261(P(t−1) + σOŪ(t−1)), where
(
P‖·‖261(P̂)

)
i,j =

P̂i,j

max(1,‖P̂i,j‖2)

4 U(t) =
θU(t−1) + θτdiv(P(t)) + τΛ

θ + τ
5 Ū(t) = 2U(t) −U(t−1)

6 end

Algorithm 6.3: The primal-dual algorithm to solve argminU
1
2θ‖U − Λ‖2

2 +

TGV2(U) in updating flow fields. U and Λ are the horizontal or vertical compo-
nents of the flow filed. P and Q are the dual variables of U and W, respectively.

Input: Λ

Output: U
1 Set U(0) = Ū(0) = Λ, W(0) = W̄(0) = 0, P(0) = 0, Q(0) = 0, σ = τ =

√
2

17+
√

33

2 for t = 1, . . . , n do

3 P(t) = Pα1(P
(t−1)+σ(OŪ(t−1)−W̄(t−1))), where

(
Pα1(P̂)

)
i,j =

P̂i,j

max(1,‖P̂i,j‖2/α1)

4 Q(t) = Pα0(Q
(t−1)+σOW̄(t−1)), where

(
Pα0(Q̂)

)
i,j = Q̂i,j/ max(1, ‖Q̂i,j‖2/α0)

5 U(t) =
θU(t−1) + θτdiv(P(t)) + τΛ

θ + τ
6 W(t) = W(t−1) + τ(P(t) + div(Q(t)))

7 Ū(t) = 2U(t) −U(t−1)

8 W̄(t) = 2W(t) −W(t−1)

9 end

alternately optimizing U and Λ. When solving for U, we use the first order Taylor
approximation to linearize L′1(X + U) in (6.22) to get

min
Λ
‖L′1(X) + 〈∇L′1(X), Λ(X)〉 − L1(X)‖+ ∑

i=1,2

1
2θ
‖Λi −Ui‖2

2, (6.23)

for which a closed-form solution for U can be obtained. Coarse-to-fine pyramid is
used to ensure accurate linearization as in [Zach et al., 2007]. When solving for Λi, we
opt for the recent first-order primal-dual technique in [Chambolle and Pock, 2011] to
solve the problems of TV-`2 (i.e., k = 1) and TGV2-`2 (i.e., k = 2). See Algorithm 6.2
and Algorithm 6.3 for the algorithms we applied for TV-`2 and TGV2-`2, respectively.



114 Layerwise Optical Flow Estimation under Transparency or Reflection

6.5 Experiments

In this section, we validate the proposed model and framework, and evaluate the
performance of our method. We report the experimental results on both synthetic
data and real images (e.g., Middlebury [Baker et al., 2011a] and Sintel [Butler et al.,
2012] flow datasets, and the reflection dataset in [Li and Brown, 2013]).

Evaluation metrics. To evaluate the performance of optical flow estimation, the
average endpoint error (EPE) in pixel distance is used. When no ground truth flow
is available, the image warping error is used similar to [Steinbrucker et al., 2009]. We
will also qualitatively evaluate the obtained optical flow fields as well as the image
separation results.

Initialization. Being an alternated method, the proposed algorithm requires an ini-
tialization to start the alternation. One can start from either an initial optical flow
estimation or from an initial layer separation. The latter one is used in our experi-
ments, and the initialization details will be given later in the experiments.

Parameters. In the following experiments, the weights of the priors, i.e., λL, λF, are
roughly tuned according to the results. Both TV and TGV2 flow regularizers worked
well, consistently improving the accuracy upon initialization. In the following, we
present the results using TV (i.e., k = 1).

6.5.1 Static Foreground Cases

We start from the simpler case where only the background layer L1 is dynamically
changing by an unknown motion field U, while the foreground layer is static (i.e.,
L2 ≡ L′2 and V ≡ 0). The task is to estimate flow field U and component layers
L1, L′1, L2. Again, we would like to emphasize that, even though we call it the “sim-
pler case”, to jointly estimate an accurate flow field and recover latent layers remains
a challenging task. To the best of our knowledge, there was no previous method that
recovers both a complex dense flow field under transparency/reflection and sepa-
rates the two constituting layers.

In the following tests, a rather conservative strategy is used to initialize the pro-
posed method: we initiate the static foreground image L2 to be all zeros. Conse-
quently, in the beginning of the optimization, we compute an initial optical flow field
naively based on the two input images.

Seeing through rain is a practical situation where measures should be taken to
avoid the rain ruining vision systems. In the first test, we first synthesized a scene
by superimposing a static rain image over the pair of Dimetrodon in the Middlebury
dataset. Gray images were used. As illustrated in Figure 6.2, within about 25 iter-
ations, the optical flow estimation error has been decreased from about 1.0 pixels
to about 0.3 pixels. This demonstrates the advantage of our formulation for robust
optical flow estimation. The qualitative results are demonstrated in Figure 6.3.
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Figure 6.2: Convergence of the proposed method. Top: optical flow estimation error
(EPE) w.r.t. iterations. Bottom: energy and layer estimation errors w.r.t. iterations.
The layer error is evaluated as 1− NCC(GT L2, estimated L2).

Table 6.1: Mean flow EPE for three Sintel image sequences superimposed with the
static rain image. Oracle flows are computed with clean background images.

Sequence Naive flow Our flow Oracle
“alley1" 0.49 0.35 0.22

“sleeping1" 0.80 0.33 0.12
“sleeping2" 0.26 0.21 0.07

Additionally, we overlay the rain image with three color image sequences from
the Sintel dataset. We evenly sampled 10 images from the “alley 1", “sleeping 1" , and
“sleeping 2" sequences respectively, and Table 6.1 shows that the proposed method
has clearly reduced the mean EPE of initial flows. Two typical results are shown in
Figure 6.4.
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(a) Input I (b) Input I′ (c) GT U

(d) Naive U (epe 1.01) (e) Output U (epe 0.29) (f) Oracle U (epe 0.16)

(g) Output L1 (h) Output L′1 (i) Output L2

(j) GT L1 (k) GT L′1 (l) GT L2

Figure 6.3: Performance evaluation of the proposed method on a single flow case,
where a rain image is superimposed on the Dimetrodon image pair. The estimated
flow (e) is significantly better than the initialization (f), a naive optical flow estimate
without layer separation. The error evolution curve is shown in Figure 6.2. Oracle
flow (l) is computed with clean background images (i.e., with ground-truth layer
separations). (Best viewed on screen)

To further test the performance of our method, we synthesized another pair by
superimposing the Lena image with the Grove image in the Middlebury dataset.
The results are demonstrated in Figure 6.5. Again, we obtained a much better optical
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(a) Input I (b) Input I

(c) Output L1 (d) Output L1

(e) Output L2 (f) Output L2

(g) Naive U (epe 0.61) (h) Naive U (epe 0.33)

(i) Output U (epe 0.30) (j) Output U (epe 0.21)

Figure 6.4: Typical results of our method on single-flow cases, where the rain drop
image is superimposed on images from the Sintel dataset. For clarity, we only show
here the first frame I and its layer separation result. (Best viewed on screen)
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(a) Input I (b) Input I′ (c) GT U

(d) Naive U (epe 1.45) (e) Output U (epe 0.88) (f) Oracle U (epe 0.67)

(g) Output L1 (h) Output L′1 (i) Output L2

(j) GT L1 (k) GT L′1 (l) GT L2

Figure 6.5: Performance evaluation of the proposed method on a single flow case,
where the Lena image is superimposed on the Grove image pair. The estimated
flow (e) is significantly better than the initialization (f), a naive optical flow estimate
without layer separation. Oracle flow (l) is computed with ground-truth L2. (Best
viewed on screen)

flow compared to the initial naive optical flow estimate. As for the layer separation
results, the portrait of Lena can be hardly seen in the restored grove images.
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Figure 6.6: Gradient statistics of three used images.

In Figure 6.6 we show the image gradient statistics of the three foreground images
used in the above experiments. The experimental results have shown that the pro-
posed method works well on these images with the sparse gradient prior. Whenever
available, other strong statistical priors can be incorporated into the optimization
framework to further improve the performance.

The example in Figure 6.1 simulated a driving scenario, where a different rain-
drop image is superposed onto an image of the scene outside of the car window.
It can be seen that the presence of raindrops can lead to poor flow estimation re-
sults. However, the proposed method produced a robust optical flow estimate and
recovered a clean scene image.

6.5.2 Dynamic Foreground Cases

In this section, we test the proposed method in the dynamic foreground cases, where
the task is that given two frames of input images I and I′, recover four component
layers L1, L′1, L2, L′2, and two dense motion fields U, V. In the problem of reflection
removal, both the background scene and the reflection can be dynamic, which can
give rise to such a situation.

We use two pairs of dynamic reflection scenes from [Li and Brown, 2013] to test
the proposed method on the double-layer optical flow problem. In previous single-
flow experiments, we initialize the method with foreground layers being all zero.
However, this simple strategy did not work for the double-flow case. No reasonably
good flow field could be obtained with this strategy for the background or reflection
layer, especially for the reflection layer as its signal is weak. Indeed, the fact that
the background layer is much more prominent has been taken advantage of by some
layer separation methods Li and Brown [2013]; Guo et al. [2014] which align the input
images with respect to the background layer. To obtain proper initialization, we first
ran method of [Li and Brown, 2013] for initial layer separations3, then computed
initial optical flows on them.

3The method of [Li and Brown, 2013] takes multiple images as input, with one of them being the
reference on which the reflection is to be removed. We apply this method on two images, and run it
twice with each image as reference.
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Input I Initial U Final U

Input I′ Initial V Final V

Input I Initial U Final U

Input I′ Initial V Final V

Figure 6.7: Double-layer optical flow estimation results on real reflection images.
Visually inspected, the final optical flow fields are smoother and more consistent
(see e.g., the results on the back wall in the first example, and results on the floor in
the second example). The corresponding warping errors are presented in Table 6.2.
(Best viewed on screen)

Table 6.2: Mean image warping errors (in gray levels) from the double-flow estima-
tion results.

Image pair Initial results Our final results
#1 6.27 2.55
#2 3.86 1.49
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The initial and final results are presented in Figure 6.7. Visually inspected, the
final optical flow fields are smoother and more consistent (see e.g. the results on
the back wall in the first example, and results on the floor in the second example).
As no ground truth optical flow is available, we use image warping error to quan-
titatively evaluate the estimated flows. The warping error for a pixel x in L1 or L2

is ‖L1(x+U(x))−L′1(x)‖2 or ‖L2(x+V(x))−L′2(x)‖2, respectively. We compute the
mean warping errors for all pixels on L1 and L2. As shown in Table 6.2, our method
has significantly reduced the warping error upon the initializations. Figure 6.8 and
6.9 show the improvements of the reflection removal upon the initial estimates.

Discussion. The dynamic foreground case with double-layer flow estimation is
generally much harder than the single-flow case. This is not only because the former
has more unknown variables to be solved for, but also due to the difficulties in ob-
taining a good initialization. Nevertheless, our experiments show that the proposed
method consistently improved the reasonable initializations given to it, for both the
single-flow and double-flow cases.

Limitation. The proposed method is better suited for scenarios where the correla-
tion between latent layers and their flow fields are relatively small. It will fail if both
the two layers are textureless (as infinite numbers of possible motions exist satisfying
the BCC constraints), or they undergo the same motion (thus the original BCC holds
and only a single motion field can be extracted).

6.6 Conclusion

This chapter has defined the problem of robust optical flow estimation in the presence
of possibly moving transparent or reflective layers. To our knowledge, the problem
goes beyond the scope of conventional optical flow methods and was not properly
investigated before.

We have presented a generalized double-layer brightness constancy condition as
well as an optimization framework to solve this problem. The double-layer brightness
constancy condition couples the flow fields and the brightness layers. Encouraging
experimental results of optical flow estimation and layer separation on challenging
data have been obtained, even though we are using simple priors for them.

The current framework is based on a generative model, which is applied uni-
formly to both the foreground and background layers. In future, we plan to leverage
discriminative models to exploit the differences between the two layers for better
layer separation. We also would like to explore some other optical flow priors. One
possible strategy is to apply piecewise parametric motion model proposed in Chap-
ter 5, which provides stronger constraints than general smoothness regularizers such
as a TV, and is demonstrated to have advanced performances. Some other issues
such as occlusion handling could also be considered.
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Initial L1 Final L1

Close-up of initial L1 Close-up of final L1

Initial L′1 Final L′1

Close-up of initial L′1 Close-up of final L′1

Initial L2 Final L2

Initial L′2 Final L′2

Figure 6.8: Layer separation results on real reflection images (the 1st pair). The initial
layer separations are estimated by running method of [Li and Brown, 2013] on the
two input images. The corresponding warping errors are presented in Table 6.2. The
close-up images show the improvements of the reflection removal results upon the
initial estimates. (Best viewed on screen)
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Initial L1 Final L1

Close-up of initial L1 Close-up of final L1

Initial L′1 Final L′1

Close-up of initial L′1 Close-up of final L′1

Initial L2 Final L2

Initial L′2 Final L′2

Figure 6.9: Layer separation results on real reflection images (the 2nd pair). The
initial layer separations are estimated by running method of [Li and Brown, 2013] on
the two input images. The corresponding warping errors are presented in Table 6.2.
The close-up images show the improvements of the reflection removal results upon
the initial estimates. (Best viewed on screen)
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Chapter 7

Summary and Future Work

Motion estimation is one of the fundamental problems in computer vision which
has broad application. The studies of camera and image motion have started since
the emergence of the computer vision field. However, motion estimation remains an
active topic nowadays with many challenging problems yet to be solved, as we have
shown in the previous chapters.

7.1 Summary and Contributions

This dissertation has been devoted to analyzing the current challenges and push
the limits of the state-of-the-art in various aspects, such as optimality, robustness,
accuracy, and flexibility. A summary of the contributions is given below.

Optimality for 3D point cloud registration and 3D camera motion estimation
(Chapter 2) and 2D color camera relative motion estimation (Chapter 3). We have
proposed the first globally optimal algorithm for the ICP-style 3D point cloud regis-
tration problem and applied it to the motion estimation of 3D imaging devices. The
idea is to analyze the structure of the SE(3) geometry and derive the error bounds for
Branch-and-Bound (BnB) optimization. Similarly, we also have proposed a globally
optimal inlier-set maximization algorithm for color camera relative motion estima-
tion. We achieve this by analyzing the structure of the 5-D essential manifold, and
presenting a new parameterization which enables efficient BnB search. The two BnB-
based methods are actually highly related to each other with the similar insights in
bound derivation.

Robustness for 2D color camera relative motion estimation (Chapter 3) and im-
age motion estimation in the presence of transparency or reflection (Chapter 6). To
deal with outliers/feature mismatches in 2D camera motion estimation, we have for-
mulated an inlier-set maximization problem as in the popular RANSAC algorithm,
but solved it optimally via BnB. Experiments have shown that our method always
finds more inliers than RANSAC, and can work under high outlier ratio especially
for the wide-FOV cases. To achieve robust image motion estimation under trans-
parency or reflection, we have proposed an algorithm which performs both optical
flow estimation and image layer separation. It exploits a generalized double-layer
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brightness consistency constraint connecting these two tasks and utilizes the priors
for both of them. In this way, not only the robustness is achieved as shown in the
experiments, but also clean background images are restored which are appealing for
other vision tasks.

Accuracy for classical image motion estimation (Chapter 5). We have proposed
a highly-accurate optical flow estimation algorithm based on a piecewise parametric
motion model. A key innovation is that we fit a flow field piecewise to a variety of
parametric models where the domain of each piece (i.e., shape, position and size)
and adaptively determine model parameters, while at the same time maintaining a
global inter-piece flow continuity constraint. The proposed algorithm has archived
top-tier performances on three public optical flow benchmarks (KITTI, MPI Sintel,
and Middlebury).

Flexibility for 2D color camera and 3D camera relative motion estimation (Chap-
ter 4). Existing works for the 2D color camera and 3D camera relative motion esti-
mation often involve cumbersome human intervention and lack flexibility (e.g., for
on-site estimation). In this dissertation, we have developed a single-shot method
and provided a corresponds-free solution in order to minimize human intervention.
We make use of known geometric constraints from the scene, and formulate relative
pose estimation as a 2D-3D registration problem minimizing the geometric errors
from scene constraints. The experiments have shown that the method is both flexible
and accurate.

7.2 Future Work

Certainly, it is possible to further refine and improve the proposed methods, such
as improving their efficiency via different strategies as well as exploiting other con-
straints and priors. Discussions about the possible amelioration for them have been
provided in the conclusion part of each chapter.

There are also some other promising future works along different directions. For
example, two research topics of our interest regarding to optical flow estimation will
be briefly described as follows.

Semantic optical flow – bridging low-level vision and high-level vision and improving
both. Up to now, optical flow estimation is rarely coupled with semantic information,
and often used as a black-box for high-level vision problems such as object/action
recognition. Recently, ideas have emerged for boosting the performance of optical
flow estimation with the aid of image semantics [Sevilla-Lara et al., 2016; Bai et al.,
2016]. For example, Sevilla-Lara et al. [2016] proposed to use different motion models
for different semantic objects in the images. To this end, they first segment the im-
age into different objects based on recent advances in image semantic segmentation.
They then fit motion models to each connected semantic region and jointly refine the
segmentation. Bai et al. [2016] propose to detect and segment out moving objects
such as cars in the driving scene. In this way, in the remaining static background re-
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gion, the image motion is purely induced by the camera ego-motion and optical flow
estimation is reduced to a 1-D search. The motions of cars can be independently
estimated. In fact, it seems quite natural to incorporate semantic segmentation in
our piecewise parametric optical flow estimation framework (Chapter 5). We could
endow the motion pieces with semantic labels, enforces appropriate constraints for
pieces of one semantic object, and jointly solve for motion estimation and semantic
segmentation. In this way, low-level motion estimation and high-level can be con-
nected. This is not only theoretically meaningful, but also of practical value (e.g., for
autonomous driving).

Scene flow estimation – dense 3D motion analysis of the scene. Optical flow esti-
mation only provides 2D motion on the image plane. With a stereo camera rig or a
range/depth sensor, dense 3D motions and structures of the scene can be estimated.
Recently, there are rising interests in scene flow estimation, either using a stereo cam-
era [Wedel et al., 2011; Vogel et al., 2014, 2015; Menze and Geiger, 2015], or a RGB-D
camera rig (which is also called RGB-D flow estimation) [Herbst et al., 2013; Quiroga
et al., 2014; Sun et al., 2015a]. With a stereo camera rig, the input includes two stereo
image pairs (i.e., four images in total), and the output can be two flow fields and
two depth (disparity) maps. In this way, both the 3D structure and the 3D motion
are recovered. RGB-D flow estimation is to compute dense correspondences between
two RGB-D image pairs. In each pair, the color and depth images are registered. So
the problem is more similar to the conventional optical flow estimation, except in this
case we have the extra depth information and the flow vectors are essentially in 3D.
Scene flow estimation provides dense 3D motion analysis, which is more appealing
for scene understanding. It is also a promising technique for autonomous driving
and augmented reality.
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Appendix A

APPENDIX: Neural Aggregation Network for
Video Face Recognition∗

Face video bear more information of the subjects than images. Video face recognition
has caught more and more attention from the community in recent years [Wolf et al.,
2011; Li et al., 2013; Wolf and Levy, 2013; Cui et al., 2013; Li et al., 2014; Liu et al.,
2014; Parkhi et al., 2014; Hu et al., 2014a; Taigman et al., 2014; Schroff et al., 2015].

A naive approach to build a feature representation of the video face would be
using a set of frame-level face features [Taigman et al., 2014; Schroff et al., 2015].
However, such a set-based representation would incur O(n) space complexity per
video face example for storage, and O(n2) complexity for face comparison (verifica-
tion) in the recognition phase. Therefore, it is more desirable to come with a compact,
fixed-size visual representation for video faces, irrespective of the varied length of
the videos. A straightforward solution might be conducting pooling to aggregate the
frame-level features, such as the commonly adopted average and max pooling.

However, we argue that a good pooling strategy should adaptively weigh the
frame-level features across all frames. To this end, we look for an adaptive weighting
scheme to linearly combine all frame features from a video together to form a com-
pact and discriminative face representation. We designed a neural network, named
the neural aggregation network (NAN) to adaptively calculate the weights at runtime.

The proposed NAN is designed to inherit the main advantages of pooling tech-
niques, including the ability to handle arbitrary input size and producing ordering
invariant representation. Its key component is inspired by the Neural Turing Ma-
chine [Graves et al., 2014] and the Orderless Set Network [Vinyals et al., 2016], both
of which applied an attention mechanism to organize the input through a memory.

A.1 Neural Aggregation Network

As shown in Figure A.1, the NAN is composed of two modules that could be trained
end-to-end or one by one separately: one feature embedding module with a deep CNN
model and an aggregation module that adaptively fuses the frame features.

∗This work was done when I was interning at Microsoft Research. It is included and briefly
introduced in this appendix chapter only for the sake of completeness of all works done during my
PhD study.
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Figure A.1: The face recognition framework of our method.

A.1.1 Feature embedding module

Let X = {xk}, k = 1, ..., t be a face video of t frames. The feature embedding module
is a deep Convolution Neural Network (CNN) which embeds each xk to a feature
representation fk. In this work, we employ GoogLeNet [Szegedy et al., 2015] with
Batch Normalization (BN) [Ioffe and Szegedy, 2015] as our CNN. It outputs 128-d
frame features {fk}, which are then fed into the aggregation module. In the remain-
ing text, we simply refer to the GoogLeNet-BN network as CNN.

A.1.2 Aggregation module

Given the frame features {fk}, the goal of the aggregation module is to generate a set
of linear weights {ak}t

k=1, so that the aggregated feature representation becomes

r = ∑
k

akfk. (A.1)

If ak ≡ 1
t , (A.1) will degrade to naive averaging which is usually non-optimal. We

instead try to let the data itself help generate better weights. To this end, we employ a
content based attention mechanism [Graves et al., 2014] in our new network structure.

The crux of our aggregation module is two attention blocks, as shown in Fig-
ure A.1. Each attention block takes {fk} as input, filters them with a kernel q via dot
product, yielding a set of corresponding significances {ek} which are then passed to
a softmax operator to generate normalized weights {ak} with ∑k ak = 1:

ek = qTfk (A.2)

ak =
exp(ek)

∑j exp(ej)
. (A.3)

The attention block is modulated solely by a filter kernel q. One key advantage of
the attention block is that its output is invariant to the input order of fk: it can be seen
from (A.2), (A.3) and (A.1) that permuting fk and fk′ has no effects on r. Another
appealing property is that the number of frames (i.e., t) does not affect the size of
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Figure A.2: Illustration of an attention block.

output r which is of the same dimension with a single fk.
We employed two attention blocks with filters q0 and q1 respectively. q0 serves

as a universal prior measuring the quality of face features. In contrast, q1 gives
rise to an aggregation that is content aware and discriminative for recognition. It is
dynamically computed from the first’s output r0, through a transfer layer:

q1 = tanh(Wr0 + b) (A.4)

where W and b are the weight matrix and bias vector respectively, and tanh(x) =
ex−e−x

ex+e−x imposes the hyperbolic tangent nonlinearity. Therefore, the parameters of
the aggregation module consists of q0 and (W, b), all of which can be trained by
supervised learning via standard gradient descent.

A.1.3 Network training
The NAN can be trained for both face verification and identification tasks. For iden-
tification, we add on top a fully-connected layer followed by softmax, and minimize
the classification loss. For verification, we add on top a normalization layer to gener-
ate unit feature vectors, then build a siamese structure [Chopra et al., 2005] with two
NANs and minimize the contrastive loss [Hadsell et al., 2006].

In this work, we train the two modules of NAN one by one: we first train the CNN
on single images with the identification task, then train the aggregation module for
identification and verification with the features extracted by CNN .

A.2 Experiments
This section evaluates the performance of the NAN for video face recognition tasks.
We will report results on three video face recognition datasets: the YouTube Face
dataset [Wolf et al., 2011], the IARPA Janus Benchmark A (IJB-A) [Klare et al., 2015],
and the Celebrity-1000 dataset [Liu et al., 2014].

Training details. To train the CNN, we use around 3M face images of 50K identities
crawled from the internet to perform identification. The input image size is 224x224,
and the CNN is fixed after training. The aggregation module is trained on the video
face datasets we use with standard backpropagation and gradient descent.

Baselines. The performance of our method is evaluated against a few baselines:
CNN+Mean L2 measures the similarity of two video faces via averaging the fea-

ture distances of all frame pairs. It necessitates storing all image features of a video
or subject, and has O(n2) complexity for similarity computation.
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Table A.1: Verification accuracy comparison of state-of-the-art methods, our baselines
and NAN network on the YouTube Face dataset.

Method Accuracy (%) AUC
LM3L [Hu et al., 2014b] 81.3 ± 1.2 89.3

DDML (combined) [Hu et al., 2014a] 82.3 ± 1.5 90.1
EigenPEP [Li et al., 2014] 84.8 ± 1.4 92.6

DeepFace-single [Taigman et al., 2014] 91.4 ± 1.1 96.3
DeepID2+ [Sun et al., 2015b] 93.2 ± 0.2 –
FaceNet [Schroff et al., 2015] 95.12 ± 0.39 –

CNN+Min. L2 94.46 ± 0.10 98.3
CNN+Mean L2 95.30 ± 0.08 98.6
CNN+MaxPool 86.60 ± 0.13 94.1
CNN+AvePool 95.10 ± 0.08 98.5

NAN 95.52 ± 0.06 98.7

Figure A.3: Average ROC curves of different methods on the YouTube Face dataset.

CNN+Min L2 is similar to the above but uses the smallest pairwise distance.
CNN+AvePool is average-pooling along each feature dimension for aggregation.
CNN+MaxPool is max-pooling along each feature dimension for aggregation.

A.2.1 Results on YouTube Face dataset

The YouTube Face dataset is designed for unconstrained face verification in videos. It
contains 3,425 videos of 1,595 different people, with an average of 2.15 videos per
subject. The video lengths vary from 48 to 6,070 frames. Ten folds of 500 video pairs
are available for cross-validation.

The results of our NAN, its baselines and other methods are presented in Ta-
ble A.1, with their ROC curves in Figure A.3. The baselines, except CNN+MaxPool,
achieve similar accuracies to the state-of-the-art method FaceNet [Schroff et al., 2015],
which has an accuracy of 95.12%±0.39. Note that FaceNet is also based on a GoogLeNet
style network, and the average similarity of all pairs of 100 frames in each video (i.e.,
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Table A.2: Verification accuracy comparison of different methods on the IJB-A
dataset.

Method TAR @ FAR=0.001 TAR @ FAR=0.01 TAR @ FAR=0.1
GOTS 0.198 ± 0.008 0.406 ± 0.014 0.627 ± 0.012

OpenBR [Klontz et al., 2013] 0.104 ± 0.014 0.236 ± 0.009 0.433 ± 0.006
LSFS [Wang et al., 2015] 0.514 ± 0.060 0.733 ± 0.034 0.895 ± 0.013

DCNNmanual+metric [Chen et al., 2015] – 0.787 ± 0.043 0.947 ± 0.011
CNN+Mean L2 0.453 ± 0.015 0.828 ± 0.023 0.957 ± 0.007
CNN+AvePool 0.559 ± 0.014 0.856 ± 0.017 0.953 ± 0.007

NAN 0.785 ± 0.028 0.897 ± 0.010 0.959 ± 0.005

10K pairs) was used. Our NAN outperforms all the baselines and other methods. It
achieves 95.52%±0.06 accuracy, reducing the error of FaceNet by 8.2%.

The face variations in the videos of this dataset are relatively small. We then test
on more challenging datasets which better shows the advantage of the NAN.

A.2.2 Results on IJB-A dataset

The IJB-A dataset contains 5,397 images and 2,042 videos for 500 subjects, with 11.4
images and 4.2 videos per subject on average. This challenging dataset features full
pose variation and wide variations in imaging conditions. Each instance is called
a ‘template’, which comprises a mixture of still images and sampled video frames.
Each template contains 1 to 190 images, with 10 images per template on average.

We tested the NAN on the ‘compare’ (1:1 matching) protocol for face verification
on IJB-A with 10 training and testing splits. The results are presented in Table A.2.
The NAN outperforms its baselines, especially on the low FAR cases. The TARs
of NAN at FARs of 0.001, 0.01 and 0.1 are 0.785, 0.897 and 0.959 respectively. The
errors are reduced by about 56%, 51% and 22% respectively compared to [Chen
et al., 2015], which used averaged image features. The proposed NAN has learned a
discriminative aggregation mechanism, which results in better verification accuracy
compared to the baseline aggregations and set-distance measurements.

A.2.3 Results on Celebrity-1000 dataset

The Celebrity-1000 dataset is designed to study the unconstrained video-based face
identification problem. This dataset contains 159,726 video sequences of 1,000 human
subjects, with 2.4M frames in total (15 frames per sequence on average). Two types
of protocols – open-set and close-set – exist on this dataset.

Close-set tests. For the close-set tests, the subject with the maximum score from
the FC layer is the identification result for the NAN, and a linear classifier is trained
for ‘CNN+AvePool’. We call this approach ‘VideoAggr’. We can also build a single
representation for each subject by aggregating all its images in all the gallery video
sequences. In this way, the linear classifier can be bypassed and identification can
be achieved simply by comparing the L2 feature distances. This approach is called
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Table A.3: Identification performance comparison on the Celebrity-1000 dataset with
the close-set protocol. The Rank-1 accuracies (%) are presented.

Method 100 subjects 200 subjects 500 subjects 1000 subjects
MTJSR [Liu et al., 2014] 50.60 40.80 35.46 30.04

Eigen-PEP [Li et al., 2014] 50.60 45.02 39.97 31.94
CNN+AvePool - VideoAggr 86.06 82.38 80.48 74.26

CNN+AvePool - SubjectAggr 84.46 78.93 77.68 73.41
NAN - VideoAggr 88.04 82.95 82.27 76.24

NAN - SubjectAggr 90.44 83.33 82.27 77.17

Table A.4: Identification performance comparison on the Celebrity-1000 dataset with
the open-set protocol. The Rank-1 accuracies (%) are presented.

Method 100 subjects 200 subjects 400 subjects 800 subjects
MTJSR [Liu et al., 2014] 46.12 39.84 37.51 33.50

Eigen-PEP [Li et al., 2014] 51.55 46.15 42.33 35.90
CNN+Mean L2 84.88 79.88 76.76 70.67

CNN+AvePool - SubjectAggr 84.11 79.09 78.40 75.12
NAN - SubjectAggr 88.76 85.21 82.74 79.87

‘SubjectAggr’. As shown in Table A.3, all the baseline methods and our NAN outper-
formed previous methods by large margins, and the NAN outperformed the baseline
methods on all tasks. It is interesting to see that, ‘SubjectAggr’ leads to a clear perfor-
mance drop by CNN+AvePool. This indicates that the hand-crafted aggregation gets
even worse when applied on the subject level. However, our NAN can benefit from
‘SubjectAggr’, yielding a result better than or on par with the ‘VideoAggr’ approach.

Open-set tests. For the open-set protocol, after training we took the ‘SubjectAggr’
approach described before to build a highly-compact face representation for each
gallery subject. Identification was performed similarly by comparing the L2 feature
distances. The results in Table A.4 shows that our NAN significantly reduced the
error of the baseline CNN+AvePoolfor all settings. This again suggests that in the
presence of large face variances, the widely used strategies such as average pooling
aggregation and the pairwise distance computation are far from optimal. In such
cases, the learned NAN model is powerful and can yield much superior results.

A.3 Conclusion

We have presented a Neural Aggregation Network, which is based on CNN and
an attention mechanism, for video face representation and recognition. It fuses all
input frames with a set of content adaptive weights, resulting in a compact (128-d)
representation that is invariant to the frame order. The structure of the aggregation
module is simple with small computation and memory footprints, but can generate
a comprehensive face representation after trained through supervised learning.
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